Chronic alcohol consumption is a leading cause of chronic liver disease worldwide, leading to cirrhosis and hepatocellular carcinoma. currently, the most widely used model for alcoholic liver injury is ad libitum feeding with the Lieber-DeCarli liquid diet containing ethanol for 4–6 weeks; however, this model, without the addition of a secondary insult, only induces mild steatosis, slight elevation of serum alanine transaminase (alt) and little or no inflammation. Here we describe a simple mouse model of alcoholic liver injury by chronic ethanol feeding (10-d ad libitum oral feeding with the Lieber-DeCarli ethanol liquid diet) plus a single binge ethanol feeding. this protocol for chronic-plus-single-binge ethanol feeding synergistically induces liver injury, inflammation and fatty liver, which mimics acute-on-chronic alcoholic liver injury in patients. this feeding protocol can also be extended to chronic feeding for longer periods of time up to 8 weeks plus single or multiple binges. chronic-binge ethanol feeding leads to high blood alcohol levels; thus, this simple model will be very useful for the study of alcoholic liver disease (ALD) and of other organs damaged by alcohol consumption.
Interleukin-22 (IL-22) is known to play a key role in promoting antimicrobial immunity, inflammation, and tissue repair at barrier surfaces by binding to the receptors IL-10R2 and IL-22R1. IL-22R1 is generally thought to be expressed exclusively in epithelial cells. In this study, we identified high levels of IL-10R2 and IL-22R1 expression on hepatic stellate cells (HSCs), the predominant cell type involved in liver fibrogenesis in response to liver damage. In vitro treatment with IL-22 induced the activation of signal transducer and activator of transcription 3 (STAT3) in primary mouse and human HSCs. IL-22 administration prevented HSC apoptosis in vitro and in vivo, but surprisingly, the overexpression of IL-22 via either gene targeting (IL-22 transgenic mice) or exogenous administration of adenovirus expressing IL-22 reduced liver fibrosis and accelerated the resolution of liver fibrosis during recovery. Furthermore, IL-22 overexpression or treatment increased the number of senescence-associated β-galactosidase-positive HSCs and decreased α-smooth muscle actin expression in fibrotic livers in vivo and cultured HSCs in vitro. Deletion of STAT3 prevented IL-22-induced HSC senescence in vitro, whereas the overexpression of a constitutively activated form of STAT3 promoted HSC senescence via p53- and p21-dependent pathways. Finally, IL-22 treatment upregulated suppressor of cytokine signaling 3 expression in HSCs. Immunoprecipitation analyses revealed that SOCS3 bound p53 and subsequently increased the expression of p53 and its target genes, contributing to IL-22-mediated HSC senescence. Conclusion IL-22 induces the senescence of HSCs, which express both IL-10R2 and IL-22R1, thereby ameliorating liver fibrogenesis. The anti-fibrotic effect of IL-22 is likely mediated via the induction of HSC senescence in addition to the previously discovered hepatoprotective functions of IL-22.
Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta ceil failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insuiin resistance through activation of peripheral CB1 receptors (CB1Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB1R signaling in beta ceils, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB1R-deficient [Cnr1−/−) or Nlrp3−/− mice, with the endocannabinoid anandamide. Peripheral CB1R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB1R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB1R as a therapeutic target in T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.