Abstract. This work is devoted to prove the exponential decay for the energy of solutions of the Korteweg-de Vries equation in a bounded interval with a localized damping term. Following the method in Menzala (2002) which combines energy estimates, multipliers and compactness arguments the problem is reduced to prove the unique continuation of weak solutions. In Menzala (2002) the case where solutions vanish on a neighborhood of both extremes of the bounded interval where equation holds was solved combining the smoothing results by T. Kato (1983) and earlier results on unique continuation of smooth solutions by J.C. Saut and B. Scheurer (1987). In this article we address the general case and prove the unique continuation property in two steps. We first prove, using multiplier techniques, that solutions vanishing on any subinterval are necessarily smooth. We then apply the existing results on unique continuation of smooth solutions.Mathematics Subject Classification. 35B40, 35Q53.
Abstract. This paper is concerned with the asymptotic behavior of solutions of the critical generalized Korteweg-de Vries equation in a bounded interval with a localized damping term. Combining multiplier techniques and compactness arguments it is shown that the problem of exponential decay of the energy is reduced to prove the unique continuation property of weak solutions. A locally uniform stabilization result is derived.
Abstract. This work is devoted to the analysis of a viscous finite-difference space semi-discretization of a locally damped wave equation in a regular 2-D domain. The damping term is supported in a suitable subset of the domain, so that the energy of solutions of the damped continuous wave equation decays exponentially to zero as time goes to infinity. Using discrete multiplier techniques, we prove that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the mesh size) exponential decay of the energy for the solutions of the numerical scheme. The numerical viscosity term damps out the high frequency numerical spurious oscillations while the convergence of the scheme towards the original damped wave equation is kept, which guarantees that the low frequencies are damped correctly. Numerical experiments are presented and confirm these theoretical results. These results extend those by Tcheugoué-Tébou and Zuazua [Numer. Math. 95, 563-598 (2003)] where the 1-D case was addressed as well the square domain in 2-D. The methods and results in this paper extend to smooth domains in any space dimension.Mathematics Subject Classification. 65M06.
This paper proves the local exact boundary controllability property of a nonlinear system of two coupled Korteweg–de Vries equations which models the interactions of weakly nonlinear gravity waves (see [10]). Following the method in [24], which combines the analysis of the linearized system and the Banach's fixed point theorem, the controllability problem is reduced to prove a nonstandard unique continuation property of the eigenfunctions of the corresponding differential operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.