We proposed a continuous blocks method for the solution of second order initial value problems with constant step size in this paper. The method was developed by interpolation and collocation of power series approximate solution to generate a continuous linear multistep method;this is evaluated for the independent solution to give a continuous block method which is evaluated at selected grid point to give discrete block method. The basic properties of the method were investigated and was found to be zero stable, consistent and convergent. The efficiency of the method was tested on some numerical examples and found to give better approximation than the existing methods.
There are several classifications of linear Integral Equations. Some of them include; Voltera Integral Equations, Fredholm Linear Integral Equations, Fredholm-Voltera Integrodifferential. In the past, solutions of higher-order Fredholm-Volterra Integrodifferential Equations [FVIE] have been presented. However, this work uses a computational techniques premised on the third kind Chebyshev polynomials method. The performance of the results for distinctive degrees of approximation (M) of the trial solution is cautiously studied and comparisons have been additionally made between the approximate/estimated and exact/definite solution at different intervals of the problems under consideration. Modelled Problems have been provided to illustrate the performance and relevance of the techniques. However, it turned out that as M increases, the outcomes received after every iteration get closer to the exact solution in all of the problems considered. The results of the experiments are therefore visible from the tables of errors and the graphical representation presented in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.