The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. Open-cut methods are predominantly used, in preference to trenchless technology, to effect a repair, replace or install a new section of the network. This is, in part, due to the inability to determine the position of all utilities below the carriageway, making open-cut methods desirable in terms of dealing with uncertainty since the buried infrastructure is progressively exposed during excavation. However, open-cut methods damage the carriageway and disrupt society's functions. This paper describes the progress of a research project that aims to develop a multi-sensor geophysical platform that can improve the probability of complete detection of the infrastructure buried beneath the carriageway. The multi-sensor platform is being developed in conjunction with a knowledge-based system that aims to provide information on how the properties of the ground might affect the sensing technologies being deployed. The fusion of data sources (sensor data and utilities record data) is also being researched to maximize the probability of location. This paper describes the outcome of the initial phase of testing along with the development of the knowledge-based system and the fusing of data to produce utility maps.
Measurements were carried out using merged beams and chopping the negative beam to evaluate the background. The measurements cover the barycentric energy range from 0.07 to 10 eV. The four cross sections were, within experimental error, equal both in magnitude and energy dependence.
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/userguides/explore-bristol-research/ebr-terms/ A. Naji is with the
This report describes the design of a γγ Higgs factory in which 62.8 GeV electron beams collide with 1 keV X-ray free electron laser (XFEL) beams to produce colliding beams of 62.5 GeV photons. The Higgs boson production rate is 32,000 Higgs bosons per 10 7 second year, roughly the same as the ILC Higgs rate. The electron accelerator is based on cold copper distributed coupling (C 3 ) accelerator technology. The 0.7 J pulse energy of the XFEL represents a 300-fold increase over the pulse energy of current soft x-ray FEL's. Design challenges are discussed, along with the R&D to address them, including demonstrators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.