<p>Era perkembangan peradaban yang dipicu oleh kemajuan ekonomi, menuntut tersedianya infrastruktur fisik yang mendukung, salah satunya adalah jembatan. Keberadaanya tidak sekedar pelengkap, tetapi telah menjadi urat nadi perekonomian. Jembatan dimasa mendatang dituntut mempunyai keandalan dalam segi kekuatan, efisiensi dan desain yang artisitik sehingga menjadi kebanggan suatu daerah. Metode yang diterapkan dalam perancangan model jembatan ini adalah dengan membandingan lima model jembatan untuk dianalisis gaya dalam pada setiap <em>frame</em> jembatan menggunakan <em>software</em> <em>Structure Analysis Program (SAP) 2000 </em>versi 14.0.0. Jembatan terpilih dianalisis menggunakan SNI 7973-2013 tentang Spesifikasi Desain Untuk Konstruksi Kayu. Dari pemilihan model tersebut terpilih Jembatan Ranggardha, dengan gaya tekan maksimum <em>(P ultimate)</em> sebesar 282,27 Newton pada <em>defleksi</em> 1,52 mm. Selanjutnya dilakukan perakitan model jembatan untuk menguji hasil perancangan tersebut terhadap model laboratorium, sehingga didapatkan jembatan tersebut mamu menahan beban sebesar 50 kg dengan berat model jembatan ini adalah 56,8 gram sehingga memiliki efisiensi sebesar 915,5 dan tingkat akurasi sebesar 96,2%.</p>
User opinions on high-volume social media and various themes provide relevant information for sentiment analysis. This information can be collected and analyzed using a natural language processing with a monitoring system to support classification of criticism and hate speech. Regarding monitoring results, a knowledge-based recommendation system with sentiment analysis is supported to send messages to user in order to use positive sentences are not offensive, polite, wise and motivational for users with hateful attitudes. It is important to formulate sentences that can differentiate between criticism and hate speech. By compiling a formula sentence as a classification reference for the text obtained in a twitter tweet whether as criticism or including hate speech. Detection of sentences containing criticism and hate speech using Bag of Word and Convolutional Neural Network to detect hate speech dan criticism sentence via Twitter. The detection results are used for the semantic recommendation system framework that includes sentiment analysis and classification of hate speech.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.