The estimation of ripeness is a significant section of quality determination since maturity at harvest can affect sensory and storage properties of fruits. A possible tactic for defining the grade of ripeness is sensing the aromatic volatiles released by fruit using electronic nose (e‐nose). For detection of the five ripeness grades of berries (whiteberry and blackberry), the e‐nose machine was designed and fabricated. Artificial neural networks (ANN), principal components analysis (PCA), and linear discriminant analysis (LDA) were applied for pattern recognition of array sensors. The best structure (10–11‐5) can classify the samples in five classes in ANN analysis with a precision of 100% and 88.3% for blackberry and whiteberry, respectively. Also, PCA analysis characterized 97% and 93% variance in the blackberry and whiteberry, respectively. The least correct classification for whiteberry was observed in the LDA method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.