The Industrial Internet of Things (IIoT) promises to deliver innovative business models across multiple domains by providing ubiquitous connectivity, intelligent data, predictive analytics, and decision-making systems for improved market performance. However, traditional IIoT architectures are highly susceptible to many security vulnerabilities and network intrusions, which bring challenges such as lack of privacy, integrity, trust, and centralization. This research aims to implement an Artificial Intelligence-based Lightweight Blockchain Security Model (AILBSM) to ensure privacy and security of IIoT systems. This novel model is meant to address issues that can occur with security and privacy when dealing with Cloud-based IIoT systems that handle data in the Cloud or on the Edge of Networks (on-device). The novel contribution of this paper is that it combines the advantages of both lightweight blockchain and Convivial Optimized Sprinter Neural Network (COSNN) based AI mechanisms with simplified and improved security operations. Here, the significant impact of attacks is reduced by transforming features into encoded data using an Authentic Intrinsic Analysis (AIA) model. Extensive experiments are conducted to validate this system using various attack datasets. In addition, the results of privacy protection and AI mechanisms are evaluated separately and compared using various indicators. By using the proposed AILBSM framework, the execution time is minimized to 0.6 seconds, the overall classification accuracy is improved to 99.8%, and detection performance is increased to 99.7%. Due to the inclusion of auto-encoder based transformation and blockchain authentication, the anomaly detection performance of the proposed model is highly improved, when compared to other techniques.
In this paper, a data mining model on a hybrid deep learning framework is designed to diagnose the medical conditions of patients infected with the coronavirus disease 2019 (COVID-19) virus. The hybrid deep learning model is designed as a combination of convolutional neural network (CNN) and recurrent neural network (RNN) and named as DeepSense method. It is designed as a series of layers to extract and classify the related features of COVID-19 infections from the lungs. The computerized tomography image is used as an input data, and hence, the classifier is designed to ease the process of classification on learning the multidimensional input data using the Expert Hidden layers. The validation of the model is conducted against the medical image datasets to predict the infections using deep learning classifiers. The results show that the DeepSense classifier offers accuracy in an improved manner than the conventional deep and machine learning classifiers. The proposed method is validated against three different datasets, where the training data are compared with 70%, 80%, and 90% training data. It specifically provides the quality of the diagnostic method adopted for the prediction of COVID-19 infections in a patient.
This paper proposed an innovative mechanical design using the Rocker-bogie mechanism for resilient Trash-Collecting Robots. Mask-RCNN, YOLOV4, and YOLOv4-tiny were experimented on and analyzed for trash detection. The Trash-Collecting Robot was developed to be completely autonomous as it was able to detect trash, move towards it, and pick it up while avoiding any obstacles along the way. Sensors including a camera, ultrasonic sensor, and GPS module played an imperative role in automation. The brain of the Robot, namely, Raspberry Pi and Arduino, processed the data from the sensors and performed path-planning and consequent motion of the robot through actuation of motors. Three models for object detection were tested for potential use in the robot: Mask-RCNN, YOLOv4, and YOLOv4-tiny. Mask-RCNN achieved an average precision (mAP) of over 83% and detection time (DT) of 3973.29 ms, YOLOv4 achieved 97.1% (mAP) and 32.76 DT, and YOLOv4-tiny achieved 95.2% and 5.21 ms DT. The YOLOv4-tiny was selected as it offered a very similar mAP to YOLOv4, but with a much lower DT. The design was simulated on different terrains and behaved as expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.