Summary• Peroxidases are involved in several important processes, such as development and responses to environmental cues. In higher plants, most peroxidases are encoded by large, multigenic families that mainly originated from gene and chromosomal duplications.• Using phylogenetic, genomic and functional analyses, we have identified and characterized a new class of putative heme peroxidases, called ascorbate peroxidase-related (APx-R), which arose specifically in the lineage of plants.• The APx-R protein is structurally related to the ascorbate peroxidases, although the active site contains many conserved substitutions. Unlike all other plant peroxidases, which are encoded by gene families, APx-R is encoded by a single-copy gene in virtually all the species analyzed. APx-R proteins are targeted to the chloroplast and can physically interact with chloroplastic APx proteins. APx-Rknockdown rice (Oryza sativa) plants presented delayed development and a disturbed steady state of the antioxidant system compared with wild type. Moreover, the accumulation of APx-R transcripts was modulated by drought, UV irradiation, cold, and aluminum exposure in rice, suggesting the involvement of APx-R in the environmental stress response.• Our results reveal the existence of a new class of heme peroxidase which seems to play a role in the antioxidant system in plants, probably by modulating the activity of chloroplastic APx proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.