Can we reconstruct the entire internal shape of a room if all we can directly observe is a small portion of one internal wall, presumably through a window in the room? While conventional wisdom may indicate that this is not possible, motivated by recent work on 'looking around corners', we show that one can exploit light echoes to reconstruct the internal shape of hidden rooms.Existing techniques for looking around the corner using transient images model the hidden volume using voxels and try to explain the captured transient response as the sum of the transient responses obtained from individual voxels. Such a technique inherently suffers from challenges with regards to low signal to background ratios (SBR) and has difficulty scaling to larger volumes. In contrast, in this paper, we argue for using a plane-based model for the hidden surfaces. We demonstrate that such a plane-based model results in much higher SBR while simultaneously being amenable to larger spatial scales. We build an experimental prototype composed of a pulsed laser source and a singlephoton avalanche detector (SPAD) that can achieve a time resolution of about 30ps and demonstrate high-fidelity reconstructions both of individual planes in a hidden volume and for reconstructing entire polygonal rooms composed of multiple planar walls.
In most biological tissues, light scattering due to small differences in refractive index limits the depth of optical imaging systems. Two-photon microscopy (2PM), which significantly reduces the scattering of the excitation light, has emerged as the most common method to image deep within scattering biological tissue. This technique, however, requires high-power pulsed lasers that are both expensive and difficult to integrate into compact portable systems. Using a combination of theoretical and experimental techniques, we show that if the excitation path length can be minimized, selective plane illumination microscopy (SPIM) can image nearly as deep as 2PM without the need for a high-powered pulsed laser. Compared to other single-photon imaging techniques like epifluorescence and confocal microscopy, SPIM can image more than twice as deep in scattering media ( ? 10 times the mean scattering length). These results suggest that SPIM has the potential to provide deep imaging in scattering media in situations in which 2PM systems would be too large or costly.
Highly scattering media pose significant challenges for many optical imaging applications due to the loss of information inherent to the scattering process. Absorption can also result in significant degradation of image quality. However, absorption can actually improve the resolution of images transmitted through scattering media in certain cases. Here we study how the presence of absorption can enhance the quality of an image transmitted through a scattering medium, by investigating the dependence of this enhancement on the medium's scattering properties. We find that absorptioninduced image resolution enhancement is substantially larger for media consisting of isotropic scatterers (e.g., dielectric nanoparticles) than for strongly forward-scattering media (e.g., biological tissue). This work leads to a broader understanding, and ultimately control, of the optical properties of strongly absorbing, scattering media.
Time of flight (ToF) cameras use a temporally modulated light source and measure correlation between the reflected light and a sensor modulation pattern, in order to infer scene depth. In this paper, we show that such correlational sensors can also be used to selectively accept or reject light rays from certain scene depths. The basic idea is to carefully select illumination and sensor modulation patterns such that the correlation is non-zero only in the selected depth range -thus light reflected from objects outside this depth range do not affect the correlational measurements. We demonstrate a prototype depth-selective camera and highlight two potential applications: imaging through scattering media and virtual blue screening. This depthselectivity can be used to reject back-scattering and reflection from media in front of the subjects of interest, thereby significantly enhancing the ability to image through scattering media-critical for applications such as car navigation in fog and rain. Similarly, such depth selectivity can also be utilized as a virtual blue-screen in cinematography by rejecting light reflecting from background, while selectively retaining light contributions from the foreground subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.