During sudden onset crisis events, the presence of spam, rumors and fake content on Twitter reduces the value of information contained on its messages (or "tweets"). A possible solution to this problem is to use machine learning to automatically evaluate the credibility of a tweet, i.e. whether a person would deem the tweet believable or trustworthy. This has been often framed and studied as a supervised classification problem in an off-line (post-hoc) setting. In this paper, we present a semi-supervised ranking model for scoring tweets according to their credibility. This model is used in TweetCred , a real-time system that assigns a credibility score to tweets in a user's timeline. TweetCred , available as a browser plug-in, was installed and used by 1,127 Twitter users within a span of three months. During this period, the credibility score for about 5.4 million tweets was computed, allowing us to evaluate TweetCred in terms of response time, effectiveness and usability. To the best of our knowledge, this is the first research work to develop a real-time system for credibility on Twitter, and to evaluate it on a user base of this size.
Twitter has evolved from being a conversation or opinion sharing medium among friends into a platform to share and disseminate information about current events. Events in the real world create a corresponding spur of posts (tweets) on Twitter. Not all content posted on Twitter is trustworthy or useful in providing information about the event. In this paper, we analyzed the credibility of information in tweets corresponding to fourteen high impact news events of 2011 around the globe. From the data we analyzed, on average 30% of total tweets posted about an event contained situational information about the event while 14% was spam. Only 17% of the total tweets posted about the event contained situational awareness information that was credible. Using regression analysis, we identified the important content and sourced based features, which can predict the credibility of information in a tweet. Prominent content based features were number of unique characters, swear words, pronouns, and emoticons in a tweet, and user based features like the number of followers and length of username. We adopted a supervised machine learning and relevance feedback approach using the above features, to rank tweets according to their credibility score. The performance of our ranking algorithm significantly enhanced when we applied re-ranking strategy. Results show that extraction of credible information from Twitter can be automated with high confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.