The quality of user-generated content varies drastically from excellent to abuse and spam. As the availability of such content increases, the task of identifying high-quality content in sites based on user contributions-social media sitesbecomes increasingly important. Social media in general exhibit a rich variety of information sources: in addition to the content itself, there is a wide array of non-content information available, such as links between items and explicit quality ratings from members of the community. In this paper we investigate methods for exploiting such community feedback to automatically identify high quality content. As a test case, we focus on Yahoo! Answers, a large community question/answering portal that is particularly rich in the amount and types of content and social interactions available in it. We introduce a general classification framework for combining the evidence from different sources of information, that can be tuned automatically for a given social media type and quality definition. In particular, for the community question/answering domain, we show that our system is able to separate high-quality items from the rest with an accuracy close to that of humans.
We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications.In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks.We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random.Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.