Social media platforms provide active communication channels during mass convergence and emergency events such as disasters caused by natural hazards. As a result, first responders, decision makers, and the public can use this information to gain insight into the situation as it unfolds. In particular, many social media messages communicated during emergencies convey timely, actionable information. Processing social media messages to obtain such information, however, involves solving multiple challenges including: parsing brief and informal messages, handling information overload, and prioritizing different types of information found in messages. These challenges can be mapped to classical information processing operations such as filtering, classifying, ranking, aggregating, extracting, and summarizing. We survey the state of the art regarding computational methods to process social media messages and highlight both their contributions and shortcomings. In addition, we examine their particularities, and methodically examine a series of key subproblems ranging from the detection of events to the creation of actionable and useful summaries. Research thus far has, to a large extent, produced methods to extract situational awareness information from social media. In this survey, we cover these various approaches, and highlight their benefits and shortcomings. We conclude with research challenges that go beyond situational awareness, and begin to look at supporting decision making and coordinating emergency-response actions.
During times of disasters online users generate a significant amount of data, some of which are extremely valuable for relief efforts. In this paper, we study the nature of social-media content generated during two different natural disasters. We also train a model based on conditional random fields to extract valuable information from such content. We evaluate our techniques over our two datasets through a set of carefully designed experiments. We also test our methods over a non-disaster dataset to show that our extraction model is useful for extracting information from socially-generated content in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.