Recently, there has been tremendous interest in the phenomenon of influence propagation in social networks. The studies in this area assume they have as input to their problems a social graph with edges labeled with probabilities of influence between users. However, the question of where these probabilities come from or how they can be computed from real social network data has been largely ignored until now. Thus it is interesting to ask whether from a social graph and a log of actions by its users, one can build models of influence. This is the main problem attacked in this paper. In addition to proposing models and algorithms for learning the model parameters and for testing the learned models to make predictions, we also develop techniques for predicting the time by which a user may be expected to perform an action. We validate our ideas and techniques using the Flickr data set consisting of a social graph with 1.3M nodes, 40M edges, and an action log consisting of 35M tuples referring to 300K distinct actions. Beyond showing that there is genuine influence happening in a real social network, we show that our techniques have excellent prediction performance.
There is significant current interest in the problem of influence maximization: given a directed social network with influence weights on edges and a number k, find k seed nodes such that activating them leads to the maximum expected number of activated nodes, according to a propagation model. Kempe et al. [1] showed, among other things, that under the Linear Threshold model, the problem is NP-hard, and that a simple greedy algorithm guarantees the best possible approximation factor in PTIME. However, this algorithm suffers from various major performance drawbacks. In this paper, we propose SIMPATH, an efficient and effective algorithm for influence maximization under the linear threshold model that addresses these drawbacks by incorporating several clever optimizations. Through a comprehensive performance study on four real data sets, we show that SIMPATH consistently outperforms the state of the art w.r.t. running time, memory consumption and the quality of the seed set chosen, measured in terms of expected influence spread achieved.
Influence maximization is the problem of finding a set of users in a social network, such that by targeting this set, one maximizes the expected spread of influence in the network. Most of the literature on this topic has focused exclusively on the social graph, overlooking historical data, i.e., traces of past action propagations. In this paper, we study influence maximization from a novel data-based perspective. In particular, we introduce a new model, which we call credit distribution, that directly leverages available propagation traces to learn how influence flows in the network and uses this to estimate expected influence spread. Our approach also learns the different levels of influenceability of users, and it is time-aware in the sense that it takes the temporal nature of influence into account.We show that influence maximization under the credit distribution model is NP-hard and that the function that defines expected spread under our model is submodular. Based on these, we develop an approximation algorithm for solving the influence maximization problem that at once enjoys high accuracy compared to the standard approach, while being several orders of magnitude faster and more scalable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.