Unkeshwar hot springs are located at geographical South East Deccan Continental basalt of India. Here, we report the microbial community analysis of this hot spring using whole metagenome shotgun sequencing approach. The analysis revealed a total of 848,096 reads with 212.87 Mbps with 50.87% G + C content. Metagenomic sequences were deposited in SRA database with accession number (SUB1242219). Community analysis revealed 99.98% sequences belonging to bacteria and 0.01% to archaea and 0.01% to Viruses. The data obtained revealed 41 phyla including bacteria and Archaea and including 719 different species. In taxonomic analysis, the dominant phyla were found as, Actinobacteria (56%), Verrucomicrobia (24%), Bacteriodes (13%), Deinococcus-Thermus (3%) and firmicutes (2%) and Viruses (2%). Furthermore, functional annotation using pathway information revealed dynamic potential of hot spring community in terms of metabolism, environmental information processing, cellular processes and other important aspects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of each contig sequence by assigning KEGG Orthology (KO) numbers revealed contig sequences that were assigned to metabolism, organismal system, Environmental Information Processing, cellular processes and human diseases with some unclassified sequences. The Unkeshwar hot springs offer rich phylogenetic diversity and metabolic potential for biotechnological applications.
Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche.
Advances in de novo sequencing technologies allow us to track deeper insights into microbial genomes for restructuring events during the course of their evolution inside and outside the host. Bacterial species belonging to Ochrobactrum genus are being reported as emerging, and opportunistic pathogens in this technology driven era probably due to insertion and deletion of genes. The Ochrobactrumintermedium M86 was isolated in 2005 from a case of non-ulcer dyspeptic human stomach followed by its first draft genome sequence in 2009. Here we report re-sequencing of O. intermedium M86 laboratory adapted strain in terms of gain and loss of genes. We also attempted for finer scale genome sequence with 10 times more genome coverage than earlier one followed by comparative evaluation on Ion PGM and Illumina MiSeq. Despite their similarities at genomic level, lab-adapted strain mainly lacked genes encoding for transposase protein, insertion elements family, phage tail-proteins that were not detected in original strain on both chromosomes. Interestingly, a 5 kb indel was detected in chromosome 2 that was absent in original strain mapped with phage integrase gene of Rhizobium spp. and may be acquired and integrated through horizontal gene transfer indicating the gene loss and gene gain phenomenon in this genus. Majority of indel fragments did not match with known genes indicating more bioinformatic dissection of this fragment. Additionally we report genes related to antibiotic resistance, heavy metal tolerance in earlier and re-sequenced strain. Though SNPs detected, there did not span urease and flagellar genes. We also conclude that third generation sequencing technologies might be useful for understanding genomic architecture and re-arrangement of genes in the genome due to their ability of larger coverage that can be used to trace evolutionary aspects in microbial system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.