Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Unkeshwar hot springs are located at geographical South East Deccan Continental basalt of India. Here, we report the microbial community analysis of this hot spring using whole metagenome shotgun sequencing approach. The analysis revealed a total of 848,096 reads with 212.87 Mbps with 50.87% G + C content. Metagenomic sequences were deposited in SRA database with accession number (SUB1242219). Community analysis revealed 99.98% sequences belonging to bacteria and 0.01% to archaea and 0.01% to Viruses. The data obtained revealed 41 phyla including bacteria and Archaea and including 719 different species. In taxonomic analysis, the dominant phyla were found as, Actinobacteria (56%), Verrucomicrobia (24%), Bacteriodes (13%), Deinococcus-Thermus (3%) and firmicutes (2%) and Viruses (2%). Furthermore, functional annotation using pathway information revealed dynamic potential of hot spring community in terms of metabolism, environmental information processing, cellular processes and other important aspects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of each contig sequence by assigning KEGG Orthology (KO) numbers revealed contig sequences that were assigned to metabolism, organismal system, Environmental Information Processing, cellular processes and human diseases with some unclassified sequences. The Unkeshwar hot springs offer rich phylogenetic diversity and metabolic potential for biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.