The need to understand the inner workings of opaque Machine Learning models has prompted researchers to devise various types of post-hoc explanations. A large class of such explainers proceed in two phases: first perturb an input instance whose explanation is sought, and then generate an interpretable artifact to explain the prediction of the opaque model on that instance. Recently, Deutch and Frost proposed to use an additional input from the user: a set of constraints over the input space to guide the perturbation phase. While this approach affords the user the ability to tailor the explanation to their needs, striking a balance between flexibility, theoretical rigor and computational cost has remained an open challenge.
We propose a novel constraint-driven explanation generation approach which simultaneously addresses these issues in a modular fashion. Our framework supports the use of expressive Boolean constraints giving the user more flexibility to specify the subspace to generate perturbations from. Leveraging advances in Formal Methods, we can theoretically guarantee strict adherence of the samples to the desired distribution. This also allows us to compute fidelity in a rigorous way, while scaling much better in practice. Our empirical study demonstrates concrete uses of our tool CLIME in obtaining more meaningful explanations with high fidelity.
A key problem in constrained random verification (CRV) concerns generation of input stimuli that result in good coverage of the system's runs in targeted corners of its behavior space. Existing CRV solutions however provide no formal guarantees on the distribution of the system's runs. In this paper, we take a first step towards solving this problem. We present an algorithm based on Algebraic Decision Diagrams for sampling bounded traces (i.e. sequences of states) of a sequential circuit with provable uniformity (or bias) guarantees, while satisfying given constraints. We have implemented our algorithm in a tool called TraceSampler. Extensive experiments show that TraceSampler outperforms alternative approaches that provide similar uniformity guarantees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.