The latest version of human coronavirus said to be COVID-19 came out as a sudden pandemic disease within human population and in the absence of vaccination and proper treatment till date, it daunting threats heavily to human lives, infecting more than 12, 11, 214 people and death more than 67, 666 people in 208 countries across the globe as on April 06, 2020, which is highly alarming. When no treatment or vaccine is available till date and to avoid COVID-19 to be transmitted in the community, social distancing is the only way to prevent the disease, which is well taken into account in our novel epidemic models as a special compartment, that is, home isolation. Based on the transmitting behavior of COVID-19 in the human population, we develop three quarantine models of this pandemic taking into account the compartments: susceptible population, immigrant population, home isolation population, infectious population, hospital quarantine population, and recovered population. Local and global asymptotic stability is proved for all the three models. Extensive numerical simulations are performed to establish the analytical results with suitable examples. Our research reveals that home isolation and quarantine to hospitals are the two pivot force-control policies under the present situation when no treatment is available for this pandemic.
SEIQR (Susceptible, Exposed, Infectious, Quarantined, and Recovered) models for the transmission of malicious objects with simple mass action incidence and standard incidence rate in computer network are formulated. Threshold, equilibrium, and their stability are discussed for the simple mass action incidence and standard incidence rate. Global stability and asymptotic stability of endemic equilibrium for simple mass action incidence have been shown. With the help of Poincare Bendixson Property, asymptotic stability of endemic equilibrium for standard incidence rate has been shown. Numerical methods have been used to solve and simulate the system of differential equations. The effect of quarantine on recovered nodes is analyzed. We have also analyzed the behavior of the susceptible, exposed, infected, quarantine, and recovered nodes in the computer network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.