Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.
With regard to fully harvesting the potential of big data, public health lags behind other fields. To determine this potential, we applied big data (air passenger volume from international areas with active chikungunya transmission, Twitter data, and vectorial capacity estimates of Aedes albopictus mosquitoes) to the 2017 chikungunya outbreaks in Europe to assess the risks for virus transmission, virus importation, and short-range dispersion from the outbreak foci. We found that indicators based on voluminous and velocious data can help identify virus dispersion from outbreak foci and that vector abundance and vectorial capacity estimates can provide information on local climate suitability for mosquitoborne outbreaks. In contrast, more established indicators based on Wikipedia and Google Trends search strings were less timely. We found that a combination of novel and disparate datasets can be used in real time to prevent and control emerging and reemerging infectious diseases.
Only a few studies have investigated the potential of using geotagged social media data for predicting the patterns of spatio-temporal spread of vector-borne diseases. We herein demonstrated the role of human mobility in the intra-urban spread of dengue by weighting local incidence data with geo-tagged Twitter data as a proxy for human mobility across 45 neighborhoods in Yogyakarta city, Indonesia. To estimate the dengue virus importation pressure in each study neighborhood monthly, we developed an algorithm to estimate a dynamic mobility-weighted incidence index (MI), which quantifies the level of exposure to virus importation in any given neighborhood. Using a Bayesian spatio-temporal regression model, we estimated the coefficients and predictiveness of the MI index for lags up to 6 months. Specifically, we used a Poisson regression model with an unstructured spatial covariance matrix. We compared the predictability of the MI index to that of the dengue incidence rate over the preceding months in the same neighborhood (autocorrelation) and that of the mobility information alone. We based our estimates on a volume of 1·302·405 geotagged tweets (from 118·114 unique users) and monthly dengue incidence data for the 45 study neighborhoods in Yogyakarta city over the period from August 2016 to June 2018. The MI index, as a standalone variable, had the highest explanatory power for predicting dengue transmission risk in the study neighborhoods, with the greatest predictive ability at a 3-months lead time. The MI index was a better predictor of the dengue risk in a neighborhood than the recent transmission patterns in the same neighborhood, or just the mobility patterns between neighborhoods. Our results suggest that human mobility is an important driver of the spread of dengue within cities when combined with information on local circulation of the dengue virus. The geotagged Twitter data can provide important information on human mobility patterns to improve our understanding of the direction and the risk of spread of diseases, such as dengue. The proposed MI index together with traditional data sources can provide useful information for the development of more accurate and efficient early warning and response systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.