IntroductionAn accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore.Methodology and Principal FindingsWe developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000–2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93–98%) in 2004–2010 and 98% (CI = 95%–100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm.SignificanceWe have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.
BackgroundHand, foot, and mouth disease (HFMD) outbreaks leading to clinical and fatal complications have increased since late 1990s; especially in the Asia Pacific Region. Outbreaks of HFMD peaks in the warmer season of the year, but the underlying factors for this annual pattern and the reasons to the recent upsurge trend have not yet been established. This study analyzed the effect of short-term changes in weather on the incidence of HFMD in Singapore.MethodsThe relative risks between weekly HFMD cases and temperature and rainfall were estimated for the period 2001–2008 using time series Poisson regression models allowing for over-dispersion. Smoothing was used to allow non-linear relationship between weather and weekly HFMD cases, and to adjust for seasonality and long-term time trend. Additionally, autocorrelation was controlled and weather was allowed to have a lagged effect on HFMD incidence up to 2 weeks.ResultsWeekly temperature and rainfall showed statistically significant association with HFMD incidence at time lag of 1–2 weeks. Every 1°C increases in maximum temperature above 32°C elevated the risk of HFMD incidence by 36% (95% CI = 1.341–1.389). Simultaneously, one mm increase of weekly cumulative rainfall below 75 mm increased the risk of HFMD by 0.3% (CI = 1.002–1.003). While above 75 mm the effect was opposite and each mm increases of rainfall decreased the incidence by 0.5% (CI = 0.995–0.996). We also found that a difference between minimum and maximum temperature greater than 7°C elevated the risk of HFMD by 41% (CI = 1.388–1.439).ConclusionOur findings suggest a strong association between HFMD and weather. However, the exact reason for the association is yet to be studied. Information on maximum temperature above 32°C and moderate rainfall precede HFMD incidence could help to control and curb the up-surging trend of HFMD.
IntroductionDengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000–2007.Materials and methodsWeekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000–2007 were retrieved and analysed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting.ResultsThe weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5–16 and 5–20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17–20 with low weekly mean temperature as well as lag week 1–4 and 17–20 with low cumulative precipitation.DiscussionAs Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004–2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future.
Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.
BackgroundA dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak.Methodology and FindingsWe developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1–5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4–20 and 8–20 weeks, respectively. These lag times provided a forecast window of 1–5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1–3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak.ConclusionsOptimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.