Background Ecological momentary assessment (EMA) uses mobile technology to enable in situ self-report data collection on behaviors and states. In a typical EMA study, participants are prompted several times a day to answer sets of multiple-choice questions. Although the repeated nature of EMA reduces recall bias, it may induce participation burden. There is a need to explore complementary approaches to collecting in situ self-report data that are less burdensome yet provide comprehensive information on an individual’s behaviors and states. A new approach, microinteraction EMA (μEMA), restricts EMA items to single, cognitively simple questions answered on a smartwatch with single-tap assessments using a quick, glanceable microinteraction. However, the viability of using μEMA to capture behaviors and states in a large-scale longitudinal study has not yet been demonstrated. Objective This paper describes the μEMA protocol currently used in the Temporal Influences on Movement & Exercise (TIME) Study conducted with young adults, the interface of the μEMA app used to gather self-report responses on a smartwatch, qualitative feedback from participants after a pilot study of the μEMA app, changes made to the main TIME Study μEMA protocol and app based on the pilot feedback, and preliminary μEMA results from a subset of active participants in the TIME Study. Methods The TIME Study involves data collection on behaviors and states from 246 individuals; measurements include passive sensing from a smartwatch and smartphone and intensive smartphone-based hourly EMA, with 4-day EMA bursts every 2 weeks. Every day, participants also answer a nightly EMA survey. On non–EMA burst days, participants answer μEMA questions on the smartwatch, assessing momentary states such as physical activity, sedentary behavior, and affect. At the end of the study, participants describe their experience with EMA and μEMA in a semistructured interview. A pilot study was used to test and refine the μEMA protocol before the main study. Results Changes made to the μEMA study protocol based on pilot feedback included adjusting the single-question selection method and smartwatch vibrotactile prompting. We also added sensor-triggered questions for physical activity and sedentary behavior. As of June 2021, a total of 81 participants had completed at least 6 months of data collection in the main study. For 662,397 μEMA questions delivered, the compliance rate was 67.6% (SD 24.4%) and the completion rate was 79% (SD 22.2%). Conclusions The TIME Study provides opportunities to explore a novel approach for collecting temporally dense intensive longitudinal self-report data in a sustainable manner. Data suggest that μEMA may be valuable for understanding behaviors and states at the individual level, thus possibly supporting future longitudinal interventions that require within-day, temporally dense self-report data as people go about their lives.
The use of intensive sampling methods, such as ecological momentary assessment (EMA), is increasingly prominent in medical research. However, inferences from such data are often limited to the subject-specific mean of the outcome and between-subject variance (i.e., random intercept), despite the capability to examine within-subject variance (i.e., random scale) and associations between covariates and subject-specific mean (i.e., random slope). MixWILD (Mixed model analysis With Intensive Longitudinal Data) is statistical software that tests the effects of subject-level parameters (variance and slope) of time-varying variables, specifically in the context of studies using intensive sampling methods, such as ecological momentary assessment. MixWILD combines estimation of a stage 1 mixed-effects location-scale (MELS) model, including estimation of the subject-specific random effects, with a subsequent stage 2 linear or binary/ordinal logistic regression in which values sampled from each subject's random effect distributions can be used as regressors (and then the results are aggregated across replications). Computations within MixWILD were written in FORTRAN and use maximum likelihood estimation, utilizing both the expectation-maximization (EM) algorithm and a Newton-Raphson solution. The mean and variance of each individual's random effects used in the sampling are estimated using empirical Bayes equations. This manuscript details the underlying procedures and provides examples illustrating standalone usage and features of MixWILD and its GUI. MixWILD is generalizable to a variety of data collection strategies (i.e., EMA, sensors) as a robust and reproducible method to test predictors of variability in level 1 outcomes and the associations between subject-level parameters (variances and slopes) and level 2 outcomes.
Mobile-based ecological-momentary-assessment (EMA) is an in-situ measurement methodology where an electronic device prompts a person to answer questions of research interest. EMA has a key limitation: interruption burden. Microinteraction-EMA(μEMA) may reduce burden without sacrificing high temporal density of measurement. In μEMA, all EMA prompts can be answered with ‘at a glance’ microinteractions. In a prior 4-week pilot study comparing standard EMA delivered on a phone (phone-EMA) vs. μEMA delivered on a smartwatch (watch-μEMA), watch-μEMA demonstrated higher response rates and lower perceived burden than phone-EMA, even when the watch-μEMA interruption rate was 8 times more than phone-EMA. A new 4-week dataset was gathered on smartwatch-based EMA (i.e., watch-EMA with 6 back-to-back, multiple-choice questions on a watch) to compare whether the high response rates of watch-μEMA previously observed were a result of using microinteractions, or due to the novelty and accessibility of the smartwatch. No statistically significant differences in compliance, completion, and first-prompt response rates were observed between phone-EMA and watch-EMA. However, watch-μEMA response rates were significantly higher than watch-EMA. This pilot suggests that (1) the high compliance and low burden previously observed in watch-μEMA is likely due to the microinteraction question technique, not simply the use of the watch versus the phone, and that (2) compliance with traditional EMA (with long surveys) may not improve simply by moving survey delivery from the phone to a smartwatch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.