The most effective vaccine candidate of malaria is based on the circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSP), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSP). Our results show that the CSP is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines.
Plasmodium falciparum circumsporozoite protein (CSP) is a critically required abundant surface protein of sporozoites and a major vaccine candidate. However, neither the structure nor the role of CSP in sporozoite motility is well understood. Our recent in vitro data, from single molecule pulling experiments suggested a mechanically pliable structure for P. falciparum CSP. By engineering vegetative cells of the cellular slime mold Dictyostelium discoideum with regulatable CSP surface expression, we report evidence for direct involvement of CSP towards conferring elastic properties and motility of the cells. With an increase in the surface CSP levels by 5to8 fold, the Youngs moduli of the cells, observed through atomic force microscopy, decreased around 2 fold, with a concomitant increase in motility by about 2 fold. Interestingly, only full length CSP expression conferred maximal flexibility and motility, as opposed to repeat region alone or the flanking domains of CSP. The enhanced motility of the CSP expressing cells was abrogated with anti CSP antibodies as well as phospholipase cleavage of CSP, indicating specific contribution of CSP towards motility. Measurements of the Youngs moduli of Plasmodium berghei midgut (MG) and salivary gland (SG) sporozoites revealed an inverse correlation with CSP levels with a decrease from 1.1 kPa to 0.3 kPa as the CSP concentration doubled from MG to SG sporozoites. We hypothesize that high CSP level lowers the stiffness of sporozoites possibly through its pliable surface-coat, leading to cellular flexibility. These findings may explain a sporozoites developmental ability to enhance its CSP levels during transition from midgut to salivary glands to suit a migratory mode in the host, needed for successful hepatocyte invasion.
G-protein-coupled receptors (GPCRs) from the largest family of receptors in the human body. They contain seven transmembrane helices. There are roughly 800-900 GPCR genes expressed in humans encoded by 4-5% of the human genome. These receptors are the most important signal transducers and play a crucial role in cell physiology and pathology, by using various extracellular stimuli to start complex intracellular signaling. GPCRs interact with a wide variety of stimuli from small molecules (photons, ions, amines) to large molecules (peptides, small proteins), and trigger downstream cascade effects by interacting with G-proteins, GPCR kinases, and ß-arrestin. Because of their crucial roles in many cellular functions, GPCRs are the most important drug targets for the pharmaceutical industry. Approximately 30% of the clinically approved drugs available in the market are against GPCRs. In this work achieved successful expression and purification of GPCRs from class-C and class-A families. Combined with biochemical experiments, DNP-ssNMR, and molecular simulation helped to decipher the mechanism of crosstalk between the allosteric modulator, and the orthosteric binding sites of the peptide receptor. The main findings and major highlights of this dissertation are outlined in the following paragraphs. The calcium-sensing receptor (CaSR) belongs to the GPCR class-C family and contains a large extracellular domain. This receptor regulates Ca2+ homeostasis in blood and its absorption in the kidney and bone. To understand the molecular and structural mechanisms of these receptors their cDNAs were cloned into the pPICZ and pOET1 vectors to express them in Pichia pastoris and in Sf9 insect cells respectively. The CaSR was successfully expressed heterologously in Pichia pastoris and in the insect cell with high yield. The purified receptor purified in LMNG shows no aggregation in a monomeric state. Further optimization was performed to use it for cryo-EM sample preparation and structure determination. In 2nd part of the thesis, different mini G (mini Gs, mini Gi, mini Gqs, and mini Gsi) DNA constructs were made and expressed in E. coli. It's challenging to obtain active GPCR structures due to the instability of G-protein or G-protein-bound receptors. In this work, all mini-G proteins and chimera mini-G-protein-maltose binding protein (MBP) were cloned and expressed in E. coli and purified with a His-trap column with high purity. In the last part of the thesis, to decipher the mechanism of allosteric modulation of orthosteric binding sites in the bradykinin receptor was produced and characterized in insect cells. Angiotensin I converting enzyme inhibitors (ACEIs), are very important drugs and are widely used for the treatment of hypertension, congestive heart failure, and diabetic neuropathy. These drugs target primarily the catalytic zinc center of the ACE. It has been shown that enalaprilat, a well-known ACEI, binds to a proposed zinc-binding site on hB1R and even directly activates the receptor. To obtain information on the influence of ACEIs on the receptor-peptide complex, and to have a better understanding of the molecular mechanism and structural plasticity of the bradykinin receptor and PAM, we used the three commercially available ACEIs captopril, enalaprilat, and lisinopril for our studies. An important result of this thesis is that though enalaprilat, captopril, and lisinopril all have similar functional properties in humans, each one regulates the orthosteric binding site of hB1R in a unique way. These findings provide atomic insights into the allosteric modulation of the bradykinin receptor. This study along with the effects of ACEI on the binding sites of receptors also deciphers the effects of the Zn2+ as well as the crosstalk between zinc binding sites and ACEI compounds. The binding of allosteric modulators induces distinct endogenous binding, which might aid in creating new possibilities in the pharmaceutical field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.