International collaboration can bring together diverse perspectives and provide critical insights for the inclusion of environmental health into basic education for medical practitioners.
Exhaled breath condensate (EBC) collection is an innovative method of non-invasively sampling the lung, and can detect a variety of volatile and non-volatile biomarkers, but the disadvantage is the small volume of sample collected. It was hypothesized that a collection system at a lower temperature would increase the volume collected, but may alter the relative concentration of the biomarkers of interest. EBC was collected in a cross-over study using a custom-made collection system, cooled using either wet (4 °C) or dry ice (-20 °C) in randomized order in normal non-smoking volunteers. The volume of the EBC collected per unit time was determined as were conductivity, the concentrations and total amount of protein, hydrogen peroxide, and nitrite/nitrate concentrations. Dry ice was associated with a 79% greater volume of EBC than the wet ice (1387 ± 612 µL; 773 ± 448 µL respectively, p < 0.0001). Conductivity was influenced by the temperature of collection (18.78 ± 6.71 µS cm(-1) for wet ice and 15.32 ± 6.28 µS cm(-1) for dry ice, p = 0.02) as was hydrogen peroxide (1.34 ± 0.88 µg mL(-1) for wet ice and 0.68 ± 0.32 µg mL(-1) for dry ice, p = 0.009) while the concentrations and total values for protein and nitrate/nitrite were not significantly different (p > 0.05). This pilot study suggests that lower collection temperatures facilitate the collection of a larger sample volume. This larger volume is not simply more dilute, with increased water content, nor is there a simple correction factor that can be applied to the EBC biomarkers to correct for the different methods.
The zeitgeist in both academia and the healthcare system supports the teaching of public health within the medical curriculum; there is also consensus at the political and pedagogical level. The challenge of ensuring engagement now needs to be met at the student-teacher interface.
Objective: To examine the sequence of environmental and entomological events prior to a substantial increase in Ross River virus (RRV) and Barmah Forest virus (BFV) notifications with a view to informing future public health response.Methods: Rainfall, tidal, mosquito and human arboviral notification data were analysed to determine the temporality of events.Results: Following two extremely dry years, there was a substantial increase in the abundance of mosquitoes along coastal New South Wales (NSW) two weeks after a significant rainfall event and high tides in February 2020. Subsequently, RRV and BFV notifications in north east NSW began to increase eight and nine weeks respectively after the high rainfall, with RRV notifications peaking 12 weeks after the high rainfall.Conclusions: Mosquito bite avoidance messaging should be instigated within two weeks of high summer rainfall, especially after an extended dry period.Implications for public health: Intense summertime rain events, which are expected to increase in frequency in south-east Australia with climate change, can lead to significant increases in arboviral disease. These events need to be recognised by public health practitioners to facilitate timely public health response. This has taken on added importance since the emergence of Japanese encephalitis virus in southeastern Australia in 2022.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.