The Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta-and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication in cis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.with 5-ethynyl uridine (EU) in the early and late lytic phases, followed by enrichment for EU-labeled RNAs and RNA-seq to assay for viral and cellular genes that are being actively transcribed at different times during the lytic cycle. Similar experiments using ribosome profiling may yield valuable information about which mRNAs are being actively translated during the lytic phase. For example, Bencun et al. (88) used ribosome profiling on EBV-positive cells to show highly variable translation of EBV transcripts. However, only about 4 to 6% of the cells used in the assay were in the lytic phase. TheFIG 3 A model for EBV late gene expression. (A) Early during the lytic cycle, EBV genomes are unreplicated and still chromatinized. The immediate early proteins BZLF1 and BRLF1 can bind to the promoters of early genes (which are usually methylated) and, along with cellular TATA box-binding protein (TBP), recruit RNA polymerase II to transcribe early genes. (B) Later in the lytic phase, EBV genomes are amplified in replication factories, while cellular chromatin moves to the periphery of the nucleus. The amplified viral DNA is unmethylated and unchromatinized, which allows the viral preinitiation complex (vPIC), including the viral TBP BcRF1, to recruit RNA Pol II to late promoters and transcribe late genes.
Epstein Barr Virus (EBV) is a human tumor virus that is causally linked to malignancies such as Burkitt’s lymphoma, and gastric and nasopharyngeal carcinomas. Tethering of EBV genomes to cellular chromosomes is required for the synthesis and persistence of viral plasmids in tumor cells. However, it is not established how EBV genomes are tethered to cellular chromosomes. We test the hypothesis that the viral protein EBNA1 tethers EBV genomes to chromosomes specifically through its N-terminal AT-hook DNA-binding domains by using a small molecule, netropsin, that has been shown to inhibit the AT-hook DNA-binding of EBNA1 in vitro. We show that netropsin forces the loss of EBV genomes from epithelial and lymphoid cells in an AT-hook dependent manner and that EBV-positive lymphoma cells are significantly more inhibited in their growth by netropsin than are corresponding EBV-negative cells.
Epstein–Barr Virus (EBV) can transform B cells and contributes to the development of Burkitt lymphoma and other cancers. Through decades of study, we now recognize that many of the viral genes required to transform cells are not expressed in EBV-positive Burkitt lymphoma (BL) tumors, likely due to the immune pressure exerted on infected cells. This recognition has led to the hypothesis that the loss of expression of these viral genes must be compensated through some mechanisms. Recent progress in genome-wide mutational analysis of tumors provides a wealth of data about the cellular mutations found in EBV-positive BLs. Here, we review common cellular mutations found in these tumors and consider how they may compensate for the viral genes that are no longer expressed. Understanding these mutations and how they may substitute for EBV’s genes and contribute to lymphomagenesis can serve as a launchpad for more mechanistic studies, which will help us navigate the sea of genomic data available today, and direct the discoveries necessary to improve the treatment of EBV-positive BLs.
Maintaining levels of calcium in the cytosol is important for many cellular events, including cell migration, where localized regions of high calcium are required to regulate cytoskeletal dynamics, contractility, and adhesion. Studies show inositol-trisphosphate receptors (IP3R) and ryanodine receptors (RyR), which release calcium into the cytosol, are important regulators of cell migration. Similarly, proteins that return calcium to secretory stores are likely to be important for cell migration. The secretory protein calcium ATPase (SPCA) is a Golgi-localized protein that transports calcium from the cytosol into secretory stores. SPCA has established roles in protein processing, metal homeostasis, and inositol-trisphosphate signaling. Defects in the human SPCA1/ATP2C1 gene cause Hailey-Hailey disease (MIM# 169600), a genodermatosis characterized by cutaneous blisters and fissures as well as keratinocyte cell adhesion defects. We have determined that PMR-1, the Caenorhabditis elegans ortholog of SPCA1, plays an essential role in embryogenesis. Pmr-1 strains isolated from genetic screens show terminal phenotypes, such as ventral and anterior enclosure failures, body morphogenesis defects, and an unattached pharynx, which are caused by earlier defects during gastrulation. In Pmr-1 embryos, migration rates are significantly reduced for cells moving along the embryo surface, such as ventral neuroblasts, C-derived, and anterior-most blastomeres. Gene interaction experiments show changing the activity of itr-1/IP3R and unc-68/RyR modulates levels of embryonic lethality in Pmr-1 strains, indicating pmr-1 acts with these calcium channels to regulate cell migration. This analysis reveals novel genes involved in C. elegans cell migration, as well as a new role in cell migration for the highly conserved SPCA gene family.
Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world’s adult population. Initial infection with EBV can cause infectious mononucleosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.