During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.
In Caenorhabditis elegans, transgenic lines are typically created by injecting DNA into the hermaphrodite germline to form multicopy extrachromosomal DNA arrays. This technique is a reliable means of expressing transgenes in C. elegans, but its use has limitations. Because extrachromosomal arrays are semistable, only a fraction of the animals in a transgenic extrachromosomal array line are transformed. In addition, because extrachromosomal arrays can contain hundreds of copies of the transforming DNA, transgenes may be overexpressed, misexpressed, or silenced. We have developed an alternative method for C. elegans transformation, using microparticle bombardment, that produces single- and low-copy chromosomal insertions. Using this method, we find that it is possible to create integrated transgenic lines that reproducibly express GFP reporter constructs without the variations in expression level and pattern frequently exhibited by extrachromosomal array lines. In addition, we find that low-copy integrated lines can also be used to express transgenes in the C. elegans germline, where conventional extrachromosomal arrays typically fail to express due to germline silencing.
Introduction of exogenous DNA into Caenorhabditis elegans is important for examining the expression of altered or reporter gene constructs, rescuing mutant genes, and studying gene function in vivo. Until recently, germ-line injection was the most commonly used method for transforming C. elegans strains. This chapter describes four different microparticle bombardment methods used to transform C. elegans with exogenous DNA. We include a discussion of the advantages and disadvantages of using microparticle bombardment for transformation, list cotransformation markers that have been used successfully in microparticle bombardment experiments, and discuss transformation efficiency.
Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than normal. We find that sma-1 mutants elongate for the same length of time as wild-type embryos, but at a decreased rate. The sma-1 mutants we have isolated vary in phenotypic severity, with the most severe alleles showing the greatest decrease in elongation rate. The sma-1 gene encodes a homolog of betaH-spectrin, a novel beta-spectrin isoform first identified in Drosophila. sma-1 RNA is expressed in epithelial tissues in the C. elegans embryo: in the embryonic epidermis at the start of morphogenesis and subsequently in the developing pharynx, intestine and excretory cell. In Drosophila, betaH-spectrin associates with the apical plasma membrane of epithelial cells; beta-spectrin is found at the lateral membrane. We propose that SMA-1 is a component of an apical membrane skeleton in the C. elegans embryonic epidermis that determines the rate of elongation during morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.