Although the Internet of Things (IoT) can increase efficiency and productivity through intelligent and remote management, it also increases the risk of cyber-attacks. The potential threats to IoT applications and the need to reduce risk have recently become an interesting research topic. It is crucial that effective Intrusion Detection Systems (IDSs) tailored to IoT applications be developed. Such IDSs require an updated and representative IoT dataset for training and evaluation. However, there is a lack of benchmark IoT and IIoT datasets for assessing IDSs-enabled IoT systems. This paper addresses this issue and proposes a new data-driven IoT/IIoT dataset with the ground truth that incorporates a label feature indicating normal and attack classes, as well as a type feature indicating the sub-classes of attacks targeting IoT/IIoT applications for multi-classification problems. The proposed dataset, which is named TON_IoT, includes Telemetry data of IoT/IIoT services, as well as Operating Systems logs and Network traffic of IoT network, collected from a realistic representation of a medium-scale network at the Cyber Range and IoT Labs at the UNSW Canberra (Australia). This paper also describes the proposed dataset of the Telemetry data of IoT/IIoT services and their characteristics. TON_IoT has various advantages that are currently lacking in the state-of-the-art datasets: i) it has various normal and attack events for different IoT/IIoT services, and ii) it includes heterogeneous data sources. We evaluated the performance of several popular Machine Learning (ML) methods and a Deep Learning model in both binary and multi-class classification problems for intrusion detection purposes using the proposed Telemetry dataset.
The Internet of Things (IoT) applications has grown in exorbitant numbers, generating a large amount of data required for intelligent data processing. However, the varying IoT infrastructures (i.e. cloud, edge, fog) and the limitations of the IoT application layer protocols in transmitting/receiving messages become the barriers in creating intelligent IoT applications. These barriers prevent current intelligent IoT applications to adaptively learn from other IoT applications. In this paper, we critically review how IoT-generated data is processed for machine learning analysis, and highlight the current challenges in furthering intelligent solutions in the IoT environment. Furthermore, we propose a framework to enable IoT applications to adaptively learn from other IoT applications, and present a case study in how the framework can be applied to the real studies in the literature. Finally, we discuss the key factors that have an impact on future intelligent applications for the IoT.
Breast cancer is the most diagnosed cancer in Australia with crude incidence rates increasing drastically from 62.8 at ages 35-39 to 271.4 at ages 50-54 (cases per 100,000 women). Various researchers have proposed methods and tools based on Machine Learning and Convolutional Neural Networks for assessing mammographic images, but these methods have produced detection and interpretation errors resulting in false-positive and false-negative cases when used in the real world. We believe that this problem can potentially be resolved by implementing effective image pre-processing techniques to create training data for Deep-CNN. Therefore, the main aim of this research is to propose effective image preprocessing methods to create datasets that can save computational time for the neural network and improve accuracy and classification rates. To do so, this research proposes methods for background removal, pectoral muscle removal, adding noise to the images, and image enhancements. Adding noise without affecting the quality of details in the images makes the input images for the neural network more representative, which may improve the performance of the neural network model when used in the real world. The proposed method for background removal is the "Rolling Ball Algorithm" and "Huang's Fuzzy Thresholding", which succeed in removing background from 100% of the images. For pectoral muscle removal "Canny Edge Detection" and "Hough's Line Transform" are used, which removed muscle from 99.06% of the images. "Invert", "CTI_RAS" and "ISOCONTOUR" lookup tables (LUTs) were used for image enhancements to outline the ROIs and regions within the ROIs.
The false data injection (FDI) attack cannot be detected by the traditional anomaly detection techniques used in the energy system state estimators. In this paper, we demonstrate how FDI attacks can be constructed blindly, i.e., without system knowledge; including topological connectivity and line reactance information. Our analysis reveal that existing FDI attacks become detectable (consequently unsuccessful) by the state estimator if the data contains grossly corrupted measurements such as device malfunction and communication errors. The proposed sparse optimization based stealthy attacks construction strategy overcomes this limitation by separating the gross errors from the measurement matrix. Extensive theoretical modelling and experimental evaluation show that the proposed technique performs more stealthily (has less relative error) and efficiently (fast enough to maintain time requirement) compared to other methods on IEEE benchmark test systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.