Cardiovascular diseases are among the most common serious illnesses affecting human health. CVDs may be prevented or mitigated by early diagnosis, and this may reduce mortality rates. Identifying risk factors using machine learning models is a promising approach. We would like to propose a model that incorporates different methods to achieve effective prediction of heart disease. For our proposed model to be successful, we have used efficient Data Collection, Data Pre-processing and Data Transformation methods to create accurate information for the training model. We have used a combined dataset (Cleveland, Long Beach VA, Switzerland, Hungarian and Stat log). Suitable features are selected by using the Relief, and Least Absolute Shrinkage and Selection Operator (LASSO) techniques. New hybrid classifiers like Decision Tree Bagging Method (DTBM), Random Forest Bagging Method (RFBM), K-Nearest Neighbors Bagging Method (KNNBM), AdaBoost Boosting Method (ABBM), and Gradient Boosting Boosting Method (GBBM) are developed by integrating the traditional classifiers with bagging and boosting methods, which are used in the training process. We have also instrumented some machine learning algorithms to calculate the Accuracy (ACC), Sensitivity (SEN), Error Rate, Precision (PRE) and F1 Score (F1) of our model, along with the Negative Predictive Value (NPR), False Positive Rate (FPR), and False Negative Rate (FNR). The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy while using RFBM and Relief feature selection methods (99.05%).
The tremendously growing problem of phishing e-mail, also known as spam including spear phishing or spam borne malware, has demanded a need for reliable intelligent anti-spam e-mail filters. This survey paper describes a focused literature survey of Artificial Intelligence (AI) and Machine Learning (ML) methods for intelligent spam email detection, which we believe can help in developing appropriate countermeasures. In this paper, we considered 4 parts in the email's structure that can be used for intelligent analysis: (A) Headers Provide Routing Information, contain mail transfer agents (MTA) that provide information like email and IP address of each sender and recipient of where the email originated and what stopovers, and final destination. (B) The SMTP Envelope, containing mail exchangers' identification, originating source and destination domains\users. (C) First part of SMTP Data, containing information like from, to, date, subject-appearing in most email clients (D) Second part of SMTP Data, containing email body including text content, and attachment. Based on the number the relevance of an emerging intelligent method, papers representing each method were identified, read, and summarized. Insightful findings, challenges and research problems are disclosed in this paper. This comprehensive survey paves the way for future research endeavors addressing theoretical and empirical aspects related to intelligent spam email detection. INDEX TERMS Machine learning, phishing attack, spear phishing, spam detection, spam email, spam filtering.
Breast cancer is the most diagnosed cancer in Australia with crude incidence rates increasing drastically from 62.8 at ages 35-39 to 271.4 at ages 50-54 (cases per 100,000 women). Various researchers have proposed methods and tools based on Machine Learning and Convolutional Neural Networks for assessing mammographic images, but these methods have produced detection and interpretation errors resulting in false-positive and false-negative cases when used in the real world. We believe that this problem can potentially be resolved by implementing effective image pre-processing techniques to create training data for Deep-CNN. Therefore, the main aim of this research is to propose effective image preprocessing methods to create datasets that can save computational time for the neural network and improve accuracy and classification rates. To do so, this research proposes methods for background removal, pectoral muscle removal, adding noise to the images, and image enhancements. Adding noise without affecting the quality of details in the images makes the input images for the neural network more representative, which may improve the performance of the neural network model when used in the real world. The proposed method for background removal is the "Rolling Ball Algorithm" and "Huang's Fuzzy Thresholding", which succeed in removing background from 100% of the images. For pectoral muscle removal "Canny Edge Detection" and "Hough's Line Transform" are used, which removed muscle from 99.06% of the images. "Invert", "CTI_RAS" and "ISOCONTOUR" lookup tables (LUTs) were used for image enhancements to outline the ROIs and regions within the ROIs.
In this digital age, we are observing an exponential proliferation of sophisticated hardware- and software-based solutions that are able to interact with the users at almost every sensitive aspect of our lives, collecting and analysing a range of data about us. These data, or the derived information out of it, are often too personal to fall into unwanted hands, and thus users are almost always wary of the privacy of such private data that are being continuously collected through these digital mediums. To further complicate the issue, the infringement cases of such databanks are on a sharp rise. Several frameworks have been devised in various parts of the globe to safeguard the issue of data privacy; in parallel, constant research is also being conducted on closing the loopholes within these frameworks. This study aimed to analyse the contemporary privacy by design frameworks to identify the key limitations. Seven contemporary privacy by design frameworks were examined in-depth in this research that was based on a systematic literature review. The result, targeted at the healthcare sector, is expected to produce a high degree of fortification against data breaches in the personal information domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.