Cardiovascular diseases are among the most common serious illnesses affecting human health. CVDs may be prevented or mitigated by early diagnosis, and this may reduce mortality rates. Identifying risk factors using machine learning models is a promising approach. We would like to propose a model that incorporates different methods to achieve effective prediction of heart disease. For our proposed model to be successful, we have used efficient Data Collection, Data Pre-processing and Data Transformation methods to create accurate information for the training model. We have used a combined dataset (Cleveland, Long Beach VA, Switzerland, Hungarian and Stat log). Suitable features are selected by using the Relief, and Least Absolute Shrinkage and Selection Operator (LASSO) techniques. New hybrid classifiers like Decision Tree Bagging Method (DTBM), Random Forest Bagging Method (RFBM), K-Nearest Neighbors Bagging Method (KNNBM), AdaBoost Boosting Method (ABBM), and Gradient Boosting Boosting Method (GBBM) are developed by integrating the traditional classifiers with bagging and boosting methods, which are used in the training process. We have also instrumented some machine learning algorithms to calculate the Accuracy (ACC), Sensitivity (SEN), Error Rate, Precision (PRE) and F1 Score (F1) of our model, along with the Negative Predictive Value (NPR), False Positive Rate (FPR), and False Negative Rate (FNR). The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy while using RFBM and Relief feature selection methods (99.05%).
The tremendously growing problem of phishing e-mail, also known as spam including spear phishing or spam borne malware, has demanded a need for reliable intelligent anti-spam e-mail filters. This survey paper describes a focused literature survey of Artificial Intelligence (AI) and Machine Learning (ML) methods for intelligent spam email detection, which we believe can help in developing appropriate countermeasures. In this paper, we considered 4 parts in the email's structure that can be used for intelligent analysis: (A) Headers Provide Routing Information, contain mail transfer agents (MTA) that provide information like email and IP address of each sender and recipient of where the email originated and what stopovers, and final destination. (B) The SMTP Envelope, containing mail exchangers' identification, originating source and destination domains\users. (C) First part of SMTP Data, containing information like from, to, date, subject-appearing in most email clients (D) Second part of SMTP Data, containing email body including text content, and attachment. Based on the number the relevance of an emerging intelligent method, papers representing each method were identified, read, and summarized. Insightful findings, challenges and research problems are disclosed in this paper. This comprehensive survey paves the way for future research endeavors addressing theoretical and empirical aspects related to intelligent spam email detection. INDEX TERMS Machine learning, phishing attack, spear phishing, spam detection, spam email, spam filtering.
COVID-19, regarded as the deadliest virus of the 21st century, has claimed the lives of millions of people around the globe in less than two years. Since the virus initially affects the lungs of patients, X-ray imaging of the chest is helpful for effective diagnosis. Any method for automatic, reliable, and accurate screening of COVID-19 infection would be beneficial for rapid detection and reducing medical or healthcare professional exposure to the virus. In the past, Convolutional Neural Networks (CNNs) proved to be quite successful in the classification of medical images. In this study, an automatic deep learning classification method for detecting COVID-19 from chest X-ray images is suggested using a CNN. A dataset consisting of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray images was used. The original data were then augmented to increase the data sample to 26,000 COVID-19 and 26,000 healthy X-ray images. The dataset was enhanced using histogram equalization, spectrum, grays, cyan and normalized with NCLAHE before being applied to CNN models. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven existing CNN models; VGG16, VGG19, MobileNetV2, InceptionV3, NFNet, ResNet50, ResNet101, DenseNet, EfficientNetB7, AlexNet, and GoogLeNet. From the models, MobileNetV2 was selected for further modification to obtain a higher accuracy of COVID-19 detection. Performance evaluation of the models was demonstrated using a confusion matrix. It was observed that the modified MobileNetV2 model proposed in the study gave the highest accuracy of 98% in classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The second-best performance was achieved from the pre-trained MobileNetV2 with an accuracy of 97%, followed by VGG19 and ResNet101 with 95% accuracy for both the models. The study compares the compilation time of the models. The proposed model required the least compilation time with 2 h, 50 min and 21 s. Finally, the Wilcoxon signed-rank test was performed to test the statistical significance. The results suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray images better than existing methods.
E-mail : 1{junayed15-5008.ahsan15-5278.syeda.cse.nafis.cse}@diu.edu.bd 2 {asif.karim, sami.azam,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.