Hyaluronan is particularly attractive for tissue engineering and repair because it: (1) is a normal component of the extracellular matrices of most mammalian tissues; (2) contributes to the biological and physical functions of these tissues; and (3) possesses excellent biocompatibility and physiochemical properties. In the present study, we characterize a two-step enzymatic cross-linking chemistry for production of tyramine-based hyaluronan hydrogels using fluorophore-assisted carbohydrate electrophoresis, enzymatic digestion, and spectroscopy including absorbance, fluorescence and (1)H NMR. Substitution on hyaluronan of tyramine and other adducts from unproductive side reactions depends on the molar ratio of tyramine to carbodiimide used during the substitution (step 1) reaction. Results indicate that relatively low tyramine substitution is required to form stable hydrogels, leaving the majority of hyaluronan disaccharides unmodified. Sufficient native HA structure is maintained to allow recognition and binding by b-HABP, a HA binding complex typically found in normal cartilage biology. Hydrogels were formed from tyramine-substituted hyaluronan through a peroxidase-dependent cross-linking (step 2) reaction at hyaluronan concentrations of 2.5 mg/ml and above. Uncross-linked tyramine-substituted hyaluronan was characterized after hyaluronidase SD digestion. Cross-linked hydrogels showed increased resistance to digestion by testicular hyaluronidase and hyaluronidase SD with increasing hyaluronan concentration. Cells directly encapsulated within the hydrogels during hydrogel cross-linking remained metabolically active during 7 days of culture similar to cells cultured in monolayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.