In nature, electrical signalling occurs with ions and protons, rather than electrons. Artificial devices that can control and monitor ionic and protonic currents are thus an ideal means for interfacing with biological systems. Here we report the first demonstration of a biopolymer protonic field-effect transistor with proton-transparent PdH x contacts. In maleic-chitosan nanofibres, the flow of protonic current is turned on or off by an electrostatic potential applied to a gate electrode. The protons move along the hydrated maleic-chitosan hydrogen-bond network with a mobility of ~4. . This study introduces a new class of biocompatible solid-state devices, which can control and monitor the flow of protonic current. This represents a step towards bionanoprotonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.