The purpose of this contribution is to develop a Circular Economy Composite indicator to benchmark EU countries performance. Europe is at the forefront of the global transition towards a sustainable and circular economy. To this end, the European Commission has launched in 2015 a Circular Economy Action Plan including a monitoring framework to measure progress and to assess the effectiveness of initiatives towards the circular economy in the European Union (EU) and Member States. Still, this monitoring framework lacks a composite indicator at the national level to aggregate the circular economy dimensions into a single summary indicator. Although there is a wide range of sustainability composite indicators, no aggregate circular economy index exits to this date. We use a multi-criteria approach to construct a circular economy composite index based on TOPSIS (Technique for Order Preferences by Similarity to Ideal Solutions) methodology. In addition, we introduce a novel aggregation methodology for building a composite indicator where different levels of compensability for the distances to the ideal and anti-ideal (or negative-ideal) values of each indicator are considered. In order to illustrate the advantages of this proposal, we have applied it to evaluate the Circular Economy performance of EU Member States for the year 2016. This proposal can be a valuable tool for identifying areas in which the countries need to concentrate their efforts to boost their circular economy performance.
Sustainable finance, which integrates environmental, social and governance criteria on financial decisions rests on the fact that money should be used for good purposes. Thus, the financial sector is also expected to play a more important role to decarbonise the global economy. To align financial flows with a pathway towards a low-carbon economy, investors should be able to integrate into their financial decisions additional criteria beyond return and risk to manage climate risk. We propose a tri-criterion portfolio selection model to extend the classical Markowitz’s mean-variance approach to include investor’s preferences on the portfolio carbon risk exposure as an additional criterion. To approximate the 3D Pareto front we apply an efficient multi-objective genetic algorithm called ev-MOGA which is based on the concept of ε-dominance. Furthermore, we introduce a-posteriori approach to incorporate the investor’s preferences into the solution process regarding their climate-change related preferences measured by the carbon risk exposure and their loss-adverse attitude. We test the performance of the proposed algorithm in a cross-section of European socially responsible investments open-end funds to assess the extent to which climate-related risk could be embedded in the portfolio according to the investor’s preferences.
This paper develops an innovative approach for designing non-parallel distributed fuzzy controllers for continuous-time non-linear systems under persistent perturbations. Non-linear systems are represented using Takagi-Sugeno fuzzy models. These non-PDC controllers guarantee bounded input bounded output stabilisation in closed-loop throughout the computation of generalised inescapable ellipsoids. These controllers are computed with linear matrix inequalities using fuzzy Lyapunov functions and integral delayed Lyapunov functions. LMI conditions developed in this paper provide non-PDC controllers with a minimum -norm (upper bound of the 1-norm) for the T-S fuzzy system under persistent perturbations. The results presented in this paper can be classified into two categories: local methods based on fuzzy Lyapunov functions with guaranteed bounds on the first derivatives of membership functions and global methods based on integral-delayed Lyapunov functions which are independent of the first derivatives of membership functions. The benefits of the proposed results are shown through some illustrative examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.