Grain weight is one of the most important components of cereal yield and quality. A clearer understanding of the physiological and molecular determinants of this complex trait would provide an insight into the potential benefits for plant breeding. In the present study, the dynamics of dry matter accumulation, water uptake, and grain size in parallel with the expression of expansins during grain growth in wheat were analysed. The stabilized water content of grains showed a strong association with final grain weight (r2=0.88, P <0.01). Grain length was found to be the trait that best correlated with final grain weight (r2=0.98, P <0.01) and volume (r2=0.94, P <0.01). The main events that defined final grain weight occurred during the first third of grain-filling when maternal tissues (the pericarp of grains) undergo considerable expansion. Eight expansin coding sequences were isolated from pericarp RNA and the temporal profiles of accumulation of these transcripts were monitored. Sequences showing high homology with TaExpA6 were notably abundant during early grain expansion and declined as maturity was reached. RNA in situ hybridization studies revealed that the transcript for TaExpA6 was principally found in the pericarp during early growth in grain development and, subsequently, in both the endosperm and pericarp. The signal in these images is likely to be the sum of the transcript levels of all three sequences with high similarity to the TaExpA6 gene. The early part of the expression profile of this putative expansin gene correlates well with the critical periods of early grain expansion, suggesting it as a possible factor in the final determination of grain size.
We report here the draft genome sequence of a lethal pathogen of farmed salmonids, Piscirickettsia salmonis strain AUSTRAL-005. This virulent strain was isolated in 2008 from Oncorhynchus mykiss farms, and multiple genes involved in pathogenicity, environmental adaptation, and metabolic pathways were identified.
Piscirickettsia salmonis is the pathogen causing Piscirickettsiosis. For treatment, the industry mainly uses oxytetracycline and florfenicol, so it is essential to understand the degree of susceptibility of this pathogen to these drugs. But this is still unknown for a large number of P. salmonis strains, as are the molecular mechanisms responsible for greater or lesser susceptibility. However, genes that confer resistance to these antimicrobials have been reported and characterized for this and other bacterial species, among which are membrane proteins that take out the drug. Our results identified differences in the degree of susceptibility to both antibiotics among different Chilean isolated of these bacteria. We analysed 10 available genomes in our laboratory and identified ~140 genes likely to be involved in antibiotic resistance. We analysed six specific genes, which suggests that some of them would eventually be relevant in conferring resistance to both antibiotics, as they encode for specific transporter proteins, which increase the number of transcripts when grown in media with these antibiotics. Our results were corroborated with EtBr permeability analysis, which revealed that the LF-89 strain accumulates this compound and has a reduced capacity to expulse it compared with the field strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.