Edited by Paul E. FraserSignaling events at membranes are often mediated by membrane lipid composition or membrane physical properties. These membrane properties could act either by favoring the membrane binding of downstream effectors or by modulating their activity. Several proteins can sense/generate membrane physical curvature (i.e. shape). However, the modulation of the activity of enzymes by a membrane's shape has not yet been reported. Here, using a cell-free assay with purified diacylglycerol kinase ⑀ (DGK⑀) and liposomes, we studied the activity and acyl-chain specificity of an enzyme of the phosphatidylinositol (PI) cycle, DGK⑀. By systematically varying the model membrane lipid composition and physical properties, we found that DGK⑀ has low activity and lacks acyl-chain specificity in locally flat membranes, regardless of the lipid composition. On the other hand, these enzyme properties were greatly enhanced in membrane structures with a negative Gaussian curvature. We also found that this is not a consequence of preferential binding of the enzyme to those structures, but rather is due to a curvature-mediated allosteric regulation of DGK⑀ activity and acylchain specificity. Moreover, in a fine-tuned interplay between the enzyme and the membrane, DGK⑀ favored the formation of structures with greater Gaussian curvature. DGK⑀ does not bear a regulatory domain, and these findings reveal the importance of membrane curvature in regulating DGK⑀ activity and acyl-chain specificity. Hence, this study highlights that a hierarchic coupling of membrane physical property and lipid composition synergistically regulates membrane signaling events. We propose that this regulatory mechanism of membrane-associated enzyme activity is likely more common than is currently appreciated.
Atomic resolution map of the soluble amyloid beta assembly (Aβn) “toxic surfaces” that facilitate the early pathogenic events in Alzheimer's disease (AD).
Caffeine is a small amphiphilic molecule, which is widely consumed as a stimulant to prevent fatigue, but is also used as a common drug adjuvant in modern medicine. Here, we show that caffeine interacts with unsaturated lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). By combining X-ray diffraction and molecular dynamics simulations, we present evidence that caffeine partitions in lipid membranes and locates at the head group-tail group interface of the bilayers. By attracting water molecules from neighboring lipid molecules, it leads to the formation of "water pockets", i.e., a local increase of water density at this interface. Through this mechanism, caffeine leads to an overall decrease of the gauche defect density in the membranes and an increase of membrane thickness, indicating a loss of membrane fluidity. These non-specific membrane interactions may increase the efficacy of analgesic drugs through changes in the bioavailability and rate of metabolism of these drugs.
With the advent of polymyxin B (PmB) resistance in bacteria, the mechanisms for mcr-1 resistance are of crucial importance in the design of novel therapeutics. The mcr-1 phenotype is known to decrease membrane charge and increase membrane packing by modification of the bacterial outer membrane. We used X-ray diffraction, Molecular Dynamics simulations, electrochemistry, and leakage assays to determine the location of PmB in different membranes and assess membrane damage. By varying membrane charge and lipid tail packing independently, we show that increasing membrane surface charge promotes penetration of PmB and membrane damage, whereas increasing lipid packing decreases penetration and damage. The penetration of the PmB molecules is well described by a phenomenological model that relates an attractive electrostatic and a repulsive force opposing insertion due to increased membrane packing. The model applies well to several gram-negative bacterial strains and may be used to predict resistance strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.