Neurobiological studies of stress often focus on the hippocampus where cortisol binds with different affinities to two types of corticosteroid receptors, i.e., mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The hippocampus is involved in learning and memory, and regulates the neuroendocrine stress response, but other brain regions also play a role, especially prefrontal cortex. Here, we examine MR and GR expression in adult squirrel monkey prefrontal cortex and hippocampus after exposure to social stress in infancy or adulthood. In situ hybridization histochemistry with (35)S-labeled squirrel monkey riboprobes and quantitative film autoradiography were used to measure the relative distributions of MR and GR mRNA. Distinct cortical cell layer-specific patterns of MR expression differed from GR expression in three prefrontal regions. The relative distributions of MR and GR also differed in hippocampal Cornu Ammonis (CA) regions. In monkeys exposed to adult social stress compared to the no-stress control, GR expression was diminished in hippocampal CA1 (P=0.021), whereas MR was diminished in cell layer III of ventrolateral prefrontal cortex (P=0.049). In contrast, exposure to early life stress diminished GR but not MR expression in cell layers I and II of dorsolateral prefrontal cortex (P's<0.048). Similar reductions likewise occurred in ventrolateral prefrontal cortex, but the effects of early life stress on GR expression in this region were marginally not significant (P=0.053). These results provide new information on regional differences and the long-term effects of stress on MR and GR distributions in corticolimbic regions that control cognitive and neuroendocrine functions.
Stressful experiences that consistently increase cortisol levels appear to alter the expression of hundreds of genes in prefrontal limbic brain regions. Here, we investigate this hypothesis in monkeys exposed to intermittent social stress-induced episodes of hypercortisolism or a no-stress control condition. Prefrontal profiles of gene expression compiled from Affymetrix microarray data for monkeys randomized to the no-stress condition were consistent with microarray results published for healthy humans. In monkeys exposed to intermittent social stress, more genes than expected by chance appeared to be differentially expressed in ventromedial prefrontal cortex compared to monkeys not exposed to adult social stress. Most of these stress responsive candidate genes were modestly downregulated, including ubiquitin conjugation enzymes and ligases involved in synaptic plasticity, cell cycle progression and nuclear receptor signaling. Social stress did not affect gene expression beyond that expected by chance in dorsolateral prefrontal cortex or prefrontal white matter. Thirty four of 48 comparisons chosen for verification by quantitative real-time polymerase chain reaction (qPCR) were consistent with the microarray-predicted result. Furthermore, qPCR and microarray data were highly correlated. These results provide new insights on the regulation of gene expression in a prefrontal corticolimbic region involved in the pathophysiology of stress and major depression. Comparisons between these data from monkeys and those for ventromedial prefrontal cortex in humans with a history of major depression may help to distinguish the molecular signature of stress from other confounding factors in human postmortem brain research.
The synthetic glucocorticoid dexamethasone (dex) blocks stress-induced hypothalamic-pituitary-adrenal (HPA) activation primarily at the level of the anterior pituitary because multidrug resistance P-glycoprotein hampers its penetration in the brain. Here, we tested the hypothesis that central components of the HPA axis would escape dex suppression under conditions of potent peripheral glucocorticoid action. We subchronically treated rats with low or high doses of dex. The animals were subjected on the last day of treatment for 30 min to a restraint stressor after which central and peripheral markers of HPA axis activity were measured. Basal and stress-induced corticosterone secretion, body weight gain, adrenal and thymus weight, as well as proopiomelanocortin mRNA in the anterior pituitary were reduced in a dose-dependent manner by dex administered either 5 d sc or 3 wk orally. In the brain, the highest dose dex suppressed CRH mRNA and CRH heteronuclear RNA in the paraventricular nucleus (PVN). However, in the peripherally active low-dose range of dex CRH mRNA and heteronuclear RNA showed resistance to suppression, and CRH mRNA expression in the PVN was in fact enhanced under the long-term treatment condition. In the PVN, c-fos mRNA was suppressed by the highest dose of dex, but this effect showed a degree of resistance after long-term oral treatment. c-fos mRNA responses in the anterior pituitary followed those in PVN and reflect central drive of the HPA axis even if corticosterone responses are strongly reduced. The results support the concept that low doses of dex can create a hypocorticoid state in the brain.
In the present study, we have investigated the role of the multidrug resistance (mdr) P-glycoprotein (Pgp) at the blood-brain barrier in hampering the access of the synthetic glucocorticoid, prednisolone.In vivo, a tracer dose of [ 3 H]prednisolone poorly penetrated the brain of adrenalectomised wild-type mice, but the uptake was more than threefold enhanced in the absence of Pgp expression in mdr1a ( / ) mice. In vitro, in stably transfected LLC-PK1 monolayers the human MDR1 P-glycoprotein was able to transport prednisolone present at a micromolar concentration. A specific Pgp blocker, LY 335979, could block this polar transport of The ability of Pgp to export the synthetic glucocorticoid, prednisolone, suggests that uptake of prednisolone in the human brain is impaired, leading to a discrepancy between central and peripheral actions. Furthermore, the ensuing imbalance in activation of the two types of brain corticosteroid receptors may have consequences for cognitive performance and mood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.