Stressful experiences that are challenging but not overwhelming appear to promote the development of arousal regulation and resilience. Variously described in studies of humans as inoculating, steeling, or toughening, the notion that coping with early life stress enhances arousal regulation and resilience is further supported by longitudinal studies of squirrel monkey development. Exposure to early life stress inoculation diminishes subsequent indications of anxiety, increases exploration of novel situations, and decreases stress-levels of cortisol compared to age-matched monkeys raised in undisturbed social groups. Stress inoculation also enhances prefrontal-dependent cognitive control of behavior and increases ventromedial prefrontal cortical volumes. Larger volumes do not reflect increased cortical thickness but instead represent surface area expansion of ventromedial prefrontal cortex. Expansion of ventromedial prefrontal cortex coincides with increased white matter myelination inferred from diffusion tensor magnetic resonance imaging. These findings suggest that early life stress inoculation triggers developmental cascades across multiple domains of adaptive functioning. Prefrontal myelination and cortical expansion induced by the process of coping with stress support broad and enduring trait-like transformations in cognitive, motivational, and emotional aspects of behavior. Implications for programs designed to promote resilience in humans are discussed.
Coping with mild early life stress tends to make subsequent coping efforts more effective and therefore more likely to be used as a means of arousal regulation and resilience. Here we show that this developmental learning-like process of stress inoculation increases ventromedial prefrontal cortical volumes in peripubertal monkeys. Larger volumes do not reflect increased cortical thickness but instead represent surface area expansion of ventromedial prefrontal cortex. Expansion of ventromedial prefrontal cortex coincides with increased white matter myelination inferred from diffusion tensor magnetic resonance imaging. These findings suggest that the process of coping with early life stress increases prefrontal myelination and expands a region of cortex that broadly controls arousal regulation and resilience.
Neurobiological studies of stress often focus on the hippocampus where cortisol binds with different affinities to two types of corticosteroid receptors, i.e., mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The hippocampus is involved in learning and memory, and regulates the neuroendocrine stress response, but other brain regions also play a role, especially prefrontal cortex. Here, we examine MR and GR expression in adult squirrel monkey prefrontal cortex and hippocampus after exposure to social stress in infancy or adulthood. In situ hybridization histochemistry with (35)S-labeled squirrel monkey riboprobes and quantitative film autoradiography were used to measure the relative distributions of MR and GR mRNA. Distinct cortical cell layer-specific patterns of MR expression differed from GR expression in three prefrontal regions. The relative distributions of MR and GR also differed in hippocampal Cornu Ammonis (CA) regions. In monkeys exposed to adult social stress compared to the no-stress control, GR expression was diminished in hippocampal CA1 (P=0.021), whereas MR was diminished in cell layer III of ventrolateral prefrontal cortex (P=0.049). In contrast, exposure to early life stress diminished GR but not MR expression in cell layers I and II of dorsolateral prefrontal cortex (P's<0.048). Similar reductions likewise occurred in ventrolateral prefrontal cortex, but the effects of early life stress on GR expression in this region were marginally not significant (P=0.053). These results provide new information on regional differences and the long-term effects of stress on MR and GR distributions in corticolimbic regions that control cognitive and neuroendocrine functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.