Deposition of semiconductors and metals from chemical precursors onto planar substrates is a well-developed science and technology for microelectronics. Optical fibers are an established platform for both communications technology and fundamental research in photonics. Here, we describe a hybrid technology that integrates key aspects of both engineering disciplines, demonstrating the fabrication of tubes, solid nanowires, coaxial heterojunctions, and longitudinally patterned structures composed of metals, single-crystal semiconductors, and polycrystalline elemental or compound semiconductors within microstructured silica optical fibers. Because the optical fibers are constructed and the functional materials are chemically deposited in distinct and independent steps, the full design flexibilities of both platforms can now be exploited simultaneously for fiber-integrated optoelectronic materials and devices.
Microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated next generation surface enhanced Raman scattering (SERS) sensors and plasmonic devices. In this paper we demonstrate silver nanoparticle substrates for SERS detection within MOF templates with exceptional temporal and mechanical stability, using organometallic precursors and a high‐pressure chemical deposition technique. These 3D substrates offer significant benefits over conventional planar detection geometries, with the long electromagnetic interaction lengths of the optical guided fiber modes exciting multiple plasmon resonances along the fiber. The large Raman response detected when analyte molecules are infiltrated within the structures can be directly related to the deposition profile of the nanoparticles within the MOFs via electrical characterization.
Extreme aspect ratio tubes and wires of polycrystalline silicon and germanium have been deposited within silica microstructured optical fibers using high-pressure precursors, demonstrating the potential of a platform technology for the development of in-fiber optoelectronics. Microstructural studies of the deposited material using Raman spectroscopy show effects due to strain between core and cladding and the presence of amorphous and polycrystalline phases for silicon. Germanium, in contrast, is more crystalline and less strained. This in-fiber device geometry is utilized for two- and three-terminal electrical characterization of the key parameters of resistivity and carrier type, mobility and concentration.
We report the fabrication of semiconductor structures within holey fibres via a pressure driven microfluidic chemical vapour deposition process, demonstrating templated growth of crystalline Group IV semiconductor structures and devices in extreme aspect ratio geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.