13C-labelled Grubbs catalysts, RuCl2(L)(PCy3)(13CHR) (R = H, Ph), pinpoint the fate of the methylidene (benzylidene) moiety during metathesis and deactivation.
Hydroxide ion is shown to be a potent disruptor of Ru-catalyzed olefin metathesis, in a study of the Hoveyda catalyst HII. Addition of [N n Bu4][OH] immediately terminates metathesis via HII, an effect traced to formation of bis(hydroxide) complex HII-OH. The latter was synthesized for direct study. HII-OH initiates very slowly on reaction with olefins, and decomposes in the first cycle of metathesis. Computational analysis reveals rapid bimolecular coupling between HII-OH and its four-coordinate methylidene derivative. Importantly, fully decomposed catalyst also accelerates decomposition of HII-OH. The H-bonding capacity of the hydroxide ligand is proposed as a powerful driving force for decomposition.
The undeclared release and subsequent detection of ruthenium-106 (106Ru) across Europe from late September to early October of 2017 prompted an international effort to ascertain the circumstances of the event. While dispersion modeling, corroborated by ground deposition measurements, has narrowed possible locations of origin, there has been a lack of direct empirical evidence to address the nature of the release. This is due to the absence of radiological and chemical signatures in the sample matrices, considering that such signatures encode the history and circumstances of the radioactive contaminant. In limiting cases such as this, we herein introduce the use of selected chemical transformations to elucidate the chemical nature of a radioactive contaminant as part of a nuclear forensic investigation. Using established ruthenium polypyridyl chemistry, we have shown that a small percentage (1.2 ± 0.4%) of the radioactive106Ru contaminant exists in a polychlorinated Ru(III) form, partly or entirely as β-106RuCl3, while 20% is both insoluble and chemically inert, consistent with the occurrence of RuO2, the thermodynamic endpoint of the volatile RuO4. Together, these findings present a clear signature for nuclear fuel reprocessing activity, specifically the reductive trapping of the volatile and highly reactive RuO4, as the origin of the release. Considering that the previously established103Ru:106Ru ratio indicates that the spent fuel was unusually young with respect to typical reprocessing protocol, it is likely that this exothermic trapping process proved to be a tipping point for an already turbulent mixture, leading to an abrupt and uncontrolled release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.