The full-field thickness distribution, three-dimensional surface model and general morphological data of six human tympanic membranes are presented. Crosssectional images were taken perpendicular through the membranes using a high-resolution optical coherence tomography setup. Five normal membranes and one membrane containing a pathological site are included in this study. The thickness varies strongly across each membrane, and a great deal of interspecimen variability can be seen in the measurement results, though all membranes show similar features in their respective relative thickness distributions. Mean thickness values across the pars tensa ranged between 79 and 97 μm; all membranes were thinnest in the central region between umbo and annular ring (50-70 μm), and thickness increased steeply over a small distance to approximately 100-120 μm when moving from the central region either towards the peripheral rim of the pars tensa or towards the manubrium. Furthermore, a local thickening was noticed in the antero-inferior quadrant of the membranes, and a strong linear correlation was observed between inferior-posterior length and mean thickness of the membrane. These features were combined into a single three-dimensional model to form an averaged representation of the human tympanic membrane. 3D reconstruction of the pathological tympanic membrane shows a structural atrophy with retraction pocket in the inferior portion of the pars tensa. The change of form at the pathological site of the membrane corresponds well with the decreased thickness values that can be measured there.
Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.
A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.
Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic—for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat—in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated.
A novel combination of adaptive optics with a simultaneous en-face OCT/SLO system for high resolution imaging of the in-vivo human retina is presented. Pairs of retinal images are shown and performance of the system is evaluated with and without dynamic wavefront correction. The adaptive optics closed loop system operates at a frame rate of 9 Hz and incorporates a Shack-Hartmann wavefront sensor based on a highly sensitive Andor camera and a 37 actuator OKO membrane deformable mirror to correct for ocular aberrations. The system produces C-scan pairs of images at a frame rate of 2 Hz. The correction of aberrations produced by the adaptive optics closed-loop system increased the signal-to-noise ratio in images obtained from volunteer eyes by up to 6 dB in the OCT channel and up to 9 dB in the SLO channel. A slight improvement in the lateral resolution was also obtained, from 6.5 mum before to 5 mum after closing the adaptive optics loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.