A very low-profile sub-THz high-gain frequency beam steering antenna, enabled by silicon micromachining, is reported for the first time in this paper. The operation bandwidth of the antenna spans from 220 GHz to 300 GHz providing a simulated field of view of 56 •. The design is based on a dielectric filled parallel-plate waveguide (PPW) leaky-wave antenna fed by a pillbox. The pillbox, a two-level PPW structure, has an integrated parabolic reflector to generate a planar wave front. The device is enabled by two extreme aspect ratio, 16 mm x 16 mm large perforated membranes, which are only 30 µm thick, that provide the coupling between the two PPWs and form the LWA. The micromachined low-loss PPW structure results in a measured average radiation efficiency of −1 dB and a maximum gain of 28.5 dBi with an input reflection coefficient below −10 dB. The overall frequency beam steering frontend is extremely compact (24 mm x 24 mm x 0.9 mm) and can be directly mounted on a standard WM-864 waveguide flange. The design and fabrication challenges of such high performance antenna in the sub-THz frequency range are described and the measurement results of two fabricated prototypes are reported and discussed.
This is the accepted version of a paper published in IEEE Transactions on Terahertz Science and Technology. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.
A D-band waveguide diplexer, implemented by silicon micromachining using releasable filling structure (RFS) technique to obtain high-precision geometries, is presented here for the first time. Prototype devices using this RFS technique are compared with devices using the conventional microfabrication process. The RFS technique allows etching large waveguide structures with nearly 90 • sidewall angles for the 400-µm-tall waveguides. The diplexer consists of two direct-coupled cavity six-pole bandpass filters, with the lower and the upper band at 130-134 and 141-148.5 GHz, respectively. The measured insertion loss of the two bands is 1.2 and 0.8 dB, respectively, and the measured return loss is 20 and 18 dB, respectively, across 85% of the passbands. The worst case adjacent channel rejection is better than 59 dB. The unloaded quality factors of a single cavity resonator are estimated from the measurements to reach 1400. Furthermore, for the RFS-based micromachined diplexer, an excellent agreement between measured and simulated data was observed, with a center frequency shift of only 0.8% and a bandwidth deviation of only 8%. In contrast to that, for the conventionally micromachined diplexer of this high complexity, the filter poles are not well controllable, resulting in a large center frequency shift of 3.5%, a huge bandwidth expanding of over 60%, a poor return loss of 6 and 10 dB for the lower and the upper band, respectively, and an adjacent channel rejection of only 22 dB.
Two high-gain flat array antenna designs operating in the 320-400 GHz frequency range are reported in this article. The two antennas show the measured gains of 32.8 and 38 dBi and consist of a 16 × 16 (256) element array and a 32 × 32 (1024) element array, respectively, which are fed by a corporate H-tree beamforming network. The measured operation bandwidth for both antennas is 80 GHz [22% fractional bandwidth (FBW)], and the total measured efficiency is above −2.5 dB and above −3.5 dB for the two designs in the whole bandwidth. The low measured loss and large bandwidth are enabled by optimizing the designs to the process requirements of the silicon on insulator (SOI) micromachining technology used in this article. The total height of the antennas is 1.1 mm (1.2 λ at the center frequency), with sizes of 15 mm × 18 mm and 27 mm × 30 mm for both arrays. The antennas are designed to be directly mounted onto a standard WM-570 waveguide flange. The design, fabrication, and measurements of eight prototypes are discussed in this article and the performance of the antennas compared to the simulated data, as well as manufacturability and fabrication repeatability are reported in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.