Two regionally significant microbial-foraminiferal episodes (150 kyr each) occur within the Early Aptian shallow marine platform in Oman and throughout eastern Arabia. The stratigraphically lower of these two intervals is characterized by isolated or coalescent domes that share similarities with modern, open-marine stromatolites from the Exuma Cays, Bahamas. The upper interval is predominantly built by a problematic Lithocodium/Bacinella consortium in buildup and massive boundstone facies. Based on highresolution chemostratigraphy, these shoalwater intervals are coeval with oceanic anoxic event 1a (OAE1a; Livello Selli). Field evidence demonstrates that the buildup episodes alternate with stratigraphic intervals dominated by rudist bivalves. This biotic pattern is also recognized in other coeval Tethyan sections and is perhaps a characteristic shoalwater expression of the OAE1a. The short-lived regional expansions of this microbial-foraminiferal out-ofbalance facies cannot be explained by local environmental factors (salinity and oxygen level) alone and the buildup consortia do not occupy stressed refugia in the absence of grazing metazoans. Judging from recent analogues, the main fossil groups, i.e. microbial assemblages, macroalgae, larger sessile foraminifera, and rudist bivalves, all favoured elevated trophic levels but with different tolerance limits. The implication of this is that the influence of palaeofertility events, possibly related to OAE1a, on carbonate platform community structures must be investigated. The observations made in these coastal sections are a significant first step for the improved understanding of the Early Aptian period of biotic, oceanic and climatic change.
Positive shifts in global seawater δ13CDIC are related to changes in the ratio of organic relative to inorganic carbon burial in oceanic basins, whereas factors such as climatic cooling and the accumulation of polar ice are known to cause positive shifts in δ18O. Here, an alternative model is proposed for the formation of local positive isotope shifts in shallow‐marine settings. The model involves geochemically altered platform‐top water masses and the effects of early meteoric diagenesis on carbonate isotopic composition. Both mechanisms are active on modern (sub)tropical carbonate platforms and result in low carbonate δ13C and δ18O relative to typical oceanic values. During high‐amplitude transgressive events, the impact of isotopically light meteoric fluids on the carbonate geochemistry is much reduced, and 13C‐depleted platform‐top water mixes with open oceanic water masses having higher isotope values. Both factors are recorded as a transient increase in carbonate 13C and 18O relative to low background values. These processes must be taken into consideration when interpreting the geochemical record of ancient epeiric seas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.