Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock.
We report a versatile capillary-based droplet reactor for the controlled synthesis of nanoparticles over a wide range of flow conditions and temperatures. The reactor tolerates large flow-rate differentials between individual reagent streams, and allows droplet composition to be varied independently of residence time and volume. The reactor was successfully applied to the synthesis of metal (Ag), metal-oxide (TiO(2)) and compound semiconductor (CdSe) nanoparticles, and in each case exhibited stable droplet flow over many hours of operation without fouling, even for reactions involving solid intermediates. For CdSe formed by the reaction of Cd oleate and Se, highly controlled growth could be achieved at temperatures of up to 250 °C, with emission spectra varying smoothly and reproducibly with temperature and flow-rate. The droplet reactor showed exceptional stability when operated under constant flow-rate and temperature conditions, yielding particles with well-defined band-edge emission spectra that did not vary over the course of a full day's continuous operation.
The uptake of zinc bis(thiosemicarbazone) complexes in human cancer cells has been studied by fluorescence microscopy and the cellular distribution established, including the degree of uptake in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.