Background The current literature on the chronic effects of static stretching (SS) exercises on muscle strength and power is unclear and controversial. Objective We aimed to examine the chronic effects of SS exercises on muscle strength and power as well as flexibility in healthy individuals across the lifespan. Design Systematic review with meta-analysis of (randomized) controlled trials. Data Sources A systematic literature search was conducted in the databases PubMed, Web of Science, Cochrane Library, and SPORTDiscus up to May 2022. Eligibility Criteria for Selecting Studies We included studies that investigated the chronic effects of SS exercises on at least one muscle strength and power outcome compared to an active/passive control group or the contralateral leg (i.e., using between- or within-study designs, respectively) in healthy individuals, irrespective of age, sex, and training status. Results The main findings of 41 studies indicated trivial-to-small positive effects of chronic SS exercises on muscle strength (standardized mean difference [SMD] = 0.21, [95% confidence interval 0.10–0.32], p = 0.001) and power (SMD = 0.19, 95% confidence interval 0.12–0.26], p < 0.001). For flexibility, moderate-to-large increases were observed (SMD = 0.96, [95% confidence interval 0.70–1.22], p < 0.001). Subgroup analyses, taking the participants’ training status into account, revealed a larger muscle strength improvement for sedentary (SMD = 0.58, p < 0.001) compared with recreationally active participants (SMD = 0.16, p = 0.029). Additionally, larger flexibility gains were observed following passive (SMD = 0.97, p < 0.001) compared with active SS exercises (SMD = 0.59, p = 0.001). The chronic effects of SS on muscle strength were moderated by the proportion of female individuals in the sample (β = 0.004, p = 0.042), with higher proportions experiencing larger gains. Other moderating variables included mean age (β = 0.011, p < 0.001), with older individuals showing larger muscle strength gains, and the number of repetitions per stretching exercise and session (β = 0.023, p = 0.004 and β = 0.013, p = 0.008, respectively), with more repetitions associated with larger muscle strength improvements. Muscle power was also moderated by mean age (β = 0.006, p = 0.007) with larger gains in older individuals. The meta-regression analysis indicated larger flexibility gains with more repetitions per session (β = 0.094, p = 0.016), more time under stretching per session (β = 0.090, p = 0.026), and more total time under stretching (β = 0.078, p = 0.034). Conclusions The main findings indicated that chronic SS exercises have the potential to improve muscle strength and power. Such improvements appear to benefit sedentary more than recreationally active participants. Likewise, chronic SS exercises result in a marked enhancement in flexibility with larger effects of passive, as compared with active, SS. The results of the meta-regression analysis for muscle strength indicated larger benefits of chronic SS exercises in samples with higher proportions of female, older participants, and a higher number of repetitions per stretching exercise and session. For muscle power, results suggested larger gains for older participants. Regarding flexibility, findings indicated larger benefits following a higher number of repetitions per exercise and a longer time under stretching per session as well as a longer total time under stretching.
Background Concurrent training can be an effective and time-efficient method to improve both muscle strength and aerobic capacity. A major challenge with concurrent training is how to adequately combine and sequence strength exercise and aerobic exercise to avoid interference effects. This is particularly relevant for athletes. Objective We aimed to examine the acute effects of aerobic exercise on subsequent measures of muscle strength and power in trained male individuals. Design We performed a systematic review with meta-analysis. Data Sources Systematic literature searches in the electronic databases PubMed, Web of Science, and Google Scholar were conducted up to July 2021. Eligibility Criteria for Selecting Studies Studies were included that applied a within-group repeated-measures design and examined the acute effects of aerobic exercise (i.e., running, cycling exercise) on subsequent measures of lower limb muscle strength (e.g., maximal isometric force of the knee extensors) and/or proxies of lower limb muscle power (e.g., countermovement jump height) in trained individuals. Results Fifteen studies met the inclusion criteria. Aerobic exercise resulted in moderate declines in muscle strength (standardized mean difference [SMD] = 0.79; p = 0.003). Low-intensity aerobic exercise did not moderate effects on muscle strength (SMD = 0.65; p = 0.157) while moderate-to-high intensity aerobic exercise resulted in moderate declines in muscle strength (SMD = 0.65; p = 0.020). However, the difference between subgroups was not statistically significant (p = 0.979). Regarding aerobic exercise duration, large declines in muscle strength were found after > 30 min (SMD = 1.02; p = 0.049) while ≤ 30 min of aerobic exercise induced moderate declines in muscle strength (SMD = 0.59; p = 0.013). The subgroup difference was not statistically significant (p = 0.204). Cycling exercise resulted in significantly larger decrements in muscle strength (SMD = 0.79; p = 0.002) compared with running (SMD = 0.28; p = 0.035). The difference between subgroups was statistically significant (p < 0.0001). For muscle power, aerobic exercise did not result in any statistically significant changes (SMD = 0.04; p = 0.846). Conclusions Aerobic exercise induced moderate declines in measures of muscle strength with no statistically significant effects on proxies of muscle power in trained male individuals. It appears that higher compared with lower intensity as well as longer compared with shorter aerobic exercise duration exacerbate acute declines in muscle strength. Our results provide evidence for acute interference effects when aerobic exercies is performed before strength exercises. These findings may help practitioners to better prescribe single training sessions, particularly if environmental and/or infrastructural reasons (e.g., availability of training facilities) do not allow the application of strength training before aerobic exercise.
Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals.Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021.Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1–15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95% CIs = 0.23–0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95% CIs = 0.18–0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95% CIs = 0.16–0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95% CIs = 0.66–0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95% CIs = −0.25–1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95% CIs = 0.16–0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95% CIs = 0.59–0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95% CIs = 0.2041–0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = −0.0133 to 0.0433 (95% CIs = −0.0387 to 0.1215); p = 0.101–0.751].Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations.
Background There is evidence that in older adults the combination of strength training (ST) and endurance training (ET) (i.e., concurrent training [CT]) has similar effects on measures of muscle strength and cardiorespiratory endurance (CRE) compared with single-mode ST or ET, respectively. Therefore, CT seems to be an effective method to target broad aspects of physical fitness in older adults. Objectives The aim was to examine the effects of CT on measures of physical fitness (i.e., muscle strength, power, balance and CRE) in healthy middle-aged and older adults aged between 50 and 73 years. We also aimed to identify key moderating variables to guide training prescription. Study Design We conducted a systematic review with meta-analysis of randomized controlled trials. Data Sources The electronic databases PubMed, Web of Science Core Collection, MEDLINE and Google Scholar were systematically searched until February 2022. Eligibility Criteria for Selecting Studies We included randomized controlled trials that examined the effects of CT versus passive controls on measures of physical fitness in healthy middle-aged and older adults aged between 50 and 73 years. Results Fifteen studies were eligible, including a total of 566 participants. CT induced moderate positive effects on muscle strength (standardized mean difference [SMD] = 0.74) and power (SMD = 0.50), with a small effect on CRE (SMD = 0.48). However, no significant effects were detected for balance (p > 0.05). Older adults > 65 years (SMD = 1.04) and females (SMD = 1.05) displayed larger improvements in muscle strength compared with adults ≤ 65 years old (SMD = 0.60) and males (SMD = 0.38), respectively. For CRE, moderate positive effects (SMD = 0.52) were reported in those ≤ 65 years old only, with relatively larger gains in females (SMD = 0.55) compared with males (SMD = 0.45). However, no significant differences between all subgroups were detected. Independent single training factor analysis indicated larger positive effects of 12 weeks (SMD = 0.87 and 0.88) compared with 21 weeks (SMD = 0.47 and 0.29) of CT on muscle strength and power, respectively, while for CRE, 21 weeks of CT resulted in larger gains (SMD = 0.62) than 12 weeks (SMD = 0.40). For CT frequency, three sessions per week produced larger beneficial effects (SMD = 0.91) on muscle strength compared with four sessions (SMD = 0.55), whereas for CRE, moderate positive effects were only noted after four sessions per week (SMD = 0.58). A session duration of > 30–60 min generated larger improvements in muscle strength (SMD = 0.99) and power (SMD = 0.88) compared with > 60–90 min (SMD = 0.40 and 0.29, respectively). However, for CRE, longer session durations (i.e., > 60–90 min) seem to be more effective (SMD = 0.61) than shorter ones (i.e., > 30–60 min) (SMD = 0.34). ET at moderate-to-near maximal intensities produced moderate (SMD = 0.64) and small positive effects (SMD = 0.49) on muscle strength and CRE, respectively, with no effects at low intensity ET (p > 0.05). Finally, intra-session ST before ET produced larger gains in muscle strength (SMD = 1.00) compared with separate sessions (SMD = 0.55), whereas ET and ST carried out separately induced larger improvements in CRE (SMD = 0.58) compared with intra-session ET before ST (SMD = 0.49). Conclusions CT is an effective method to improve measures of physical fitness (i.e., muscle strength, power, and CRE) in healthy middle-aged and older adults aged between 50 and 73 years, regardless of sex. Results of independent single training factor analysis indicated that the largest effects on muscle strength were observed after 12 weeks of training, > 30–60 min per session, three sessions per week, higher ET intensities and when ST preceded ET within the same session. For CRE, the largest effects were noted after 21 weeks of training, four sessions per week, > 60–90 min per session, higher ET intensities and when ET and ST sessions were performed separately. Regarding muscle power, the largest effects were observed after 12 weeks of training and > 30–60 min per session.
This exploratory study aimed to monitor long-term seasonal developments in measures of anthropometry, body composition, and physical fitness in young judo athletes, and to compute associations between these measures and sporting success. Forty-four young judoka (20 females, 24 males) volunteered to participate. Tests for the assessment of anthropometry (e.g., body height/mass), body-composition (e.g., lean body mass), muscle strength (isometric handgrip strength), vertical jumping (e.g., countermovement-jump (CMJ) height), and dynamic balance (Y-balance test) were conducted at the beginning and end of a 10-month training season. Additionally, sporting success at the end of the season was recorded for each athlete. Analyses revealed significant time × sex interaction effects for lean-body-mass, isometric handgrip strength, and CMJ height (0.7 ≤ d ≤ 1.6). Post-hoc analyses showed larger gains for all measures in young males (1.9 ≤ d ≤6.0) compared with females (d = 2.4) across the season. Additionally, significant increases in body height and mass as well as Y-balance test scores were found from pre-to-post-test (1.2 ≤ d ≤4.3), irrespective of sex. Further, non-significant small-to-moderate-sized correlations were identified between changes in anthropometry/body composition/physical fitness and sporting success (p > 0.05; −0.34 ≤ ρ ≤ 0.32). Regression analysis confirmed that no model significantly predicted sporting success. Ten months of judo training and/or growth/maturation contributed to significant changes in anthropometry, body composition, and physical fitness, particularly in young male judo athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.