We present new flexible, transparent, and conductive coatings composed of an annealed silver nanowire network embedded in a polyurethane optical adhesive. These coatings can be applied to rigid glass substrates as well as to flexible polyethylene terephthalate (PET) plastic and elastomeric polydimethylsiloxane (PDMS) substrates to produce highly flexible transparent conductive electrodes. The coatings are as conductive and transparent as indium tin oxide (ITO) films on glass, but they remain conductive at high bending strains and are more durable to marring and scratching than ITO. Coatings on PDMS withstand up to 76% tensile strain and 250 bending cycles of 15% strain with a negligible increase in electrical resistance. Since the silver nanowire network is embedded at the surface of the optical adhesive, these coatings also provide a smooth surface (root mean squared surface roughness<10 nm), making them suitable as transparent conducting electrodes in flexible light-emitting electrochemical cells. These devices continue to emit light even while being bent to radii as low as 1.5 mm and perform as well as unstrained devices after 20 bending cycles of 25% tensile strain.
For over 20 years, template stripping has been the best method for preparing ultrasmooth metal surfaces for studies of nanostructures. However, the organic adhesives used in the template stripping method are incompatible with many solvents, limiting the conditions that may subsequently be used to prepare samples; in addition, the film areas that can be reliably prepared are typically limited to ∼1 cm(2). In this article, we present chemical-mechanical polishing (CMP) as an adhesive-free, scalable method of preparing ultrasmooth gold surfaces. In this process, a gold film is first deposited by e-beam evaporation onto a 76-mm-diameter silicon wafer. The CMP process removes ∼4 nm of gold from the tops of the grains comprising the gold film to produce an ultrasmooth gold surface supported on the silicon wafer. We measured root-mean-square (RMS) roughness values using atomic force microscopy of 12 randomly sampled 1 μm × 1 μm areas on the surface of the wafer and repeated the process on 5 different CMP wafers. The average RMS roughness was 3.8 ± 0.5 Å, which is comparable to measured values for template-stripped gold (3.7 ± 0.5 Å). We also compared the use of CMP and template-stripped gold as bottom electrical contacts in molecular electronic junctions formed from n-alkanethiolate self-assembled monolayers as a sensitive test bed to detect differences in the topography of the gold surfaces. We demonstrate that these substrates produce statistically indistinguishable values for the tunneling decay coefficient β, which is highly sensitive to the gold surface topography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.