Recognizing named entities in a document is a key task in many NLP applications. Although current state-of-the-art approaches to this task reach a high performance on clean text (e.g. newswire genres), those algorithms dramatically degrade when they are moved to noisy environments such as social media domains. We present two systems that address the challenges of processing social media data using character-level phonetics and phonology, word embeddings, and Part-of-Speech tags as features. The first model is a multitask end-toend Bidirectional Long Short-Term Memory (BLSTM)-Conditional Random Field (CRF) network whose output layer contains two CRF classifiers. The second model uses a multitask BLSTM network as feature extractor that transfers the learning to a CRF classifier for the final prediction. Our systems outperform the current F1 scores of the state of the art on the Workshop on Noisy User-generated Text 2017 dataset by 2.45% and 3.69%, establishing a more suitable approach for social media environments.
This paper proposes a novel document representation, called Multi-Resolution Representation (MulR), to improve the early detection of risks in social media sources. The goal is to effectively identify the potential risk using as little evidence as possible and with as much anticipation as possible. MulR allows us to generate multiple "views" of the text. These views capture different semantic meanings for words and documents at different levels of granularity, which is very useful in early scenarios to model the variable amounts of evidence. The experimental evaluation shows that MulR using low resolution is better suited for modeling short documents (very early stages), whereas large documents (medium/late stages) are better modeled with higher resolutions. We evaluate the proposed ideas in two different tasks where anticipation is critical: sexual predator detection and depression detection. The experimental evaluation for these early tasks revealed that the proposed approach outperforms previous methodologies by a considerable margin.
The Multimodal Transformer showed to be a competitive model for multimodal tasks involving textual, visual and audio signals. However, as more modalities are involved, its late fusion by concatenation starts to have a negative impact on the model's performance. Besides, interpreting model's predictions becomes difficult, as one would have to look at the different attention activation matrices. In order to overcome these shortcomings, we propose to perform late fusion by adding a GMU module, which effectively allows the model to weight modalities at instance level, improving its performance while providing a better interpretabilty mechanism. In the experiments, we compare our proposed model (MulT-GMU) against the original implementation (MulT-Concat) and a SOTA model tested in a movie genre classification dataset. Our approach, MulT-GMU, outperforms both, MulT-Concat and previous SOTA model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.