Nowadays social media platforms are the most popular way for people to share information, from work issues to personal matters. For example, people with health disorders tend to share their concerns for advice, support or simply to relieve suffering. This provides a great opportunity to proactively detect these users and refer them as soon as possible to professional help. We propose a new representation called Bag of Sub-Emotions (BoSE), which represents social media documents by a set of fine-grained emotions automatically generated using a lexical resource of emotions and subword embeddings. The proposed representation is evaluated in the task of depression detection. The results are encouraging; the usage of fine-grained emotions improved the results from a representation based on the core emotions and obtained competitive results in comparison to state of the art approaches.
This paper presents the Deep Bag-of-Sub-Emotions (DeepBoSE), a novel deep learning model for depression detection in social media. The model is formulated such that it internally computes a differentiable Bag-of-Features (BoF) representation that incorporates emotional information. This is achieved by a reinterpretation of classical weighting schemes like term frequency-inverse document frequency into probabilistic deep learning operations. An important advantage of the proposed method is that it can be trained under the transfer learning paradigm, which is useful to enhance conventional BoF models that cannot be directly integrated into deep learning architectures. Experiments were performed in the eRisk17 and eRisk18 datasets for the depression detection task; results show that DeepBoSE outperforms conventional BoF representations and it is competitive with the state of the art, achieving a F1-score over the positive class of 0.64 in eRisk17 and 0.65 in eRisk18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.