Nowadays social media platforms are the most popular way for people to share information, from work issues to personal matters. For example, people with health disorders tend to share their concerns for advice, support or simply to relieve suffering. This provides a great opportunity to proactively detect these users and refer them as soon as possible to professional help. We propose a new representation called Bag of Sub-Emotions (BoSE), which represents social media documents by a set of fine-grained emotions automatically generated using a lexical resource of emotions and subword embeddings. The proposed representation is evaluated in the task of depression detection. The results are encouraging; the usage of fine-grained emotions improved the results from a representation based on the core emotions and obtained competitive results in comparison to state of the art approaches.
This paper presents a genetic algorithm for an important computational biology problem. The problem appears in the computational part of a new proposal for DNA sequencing denominated sequencing by hybridization. The general usage of this method for real sequencing purposes depends mainly on the development of good algorithmic procedures for solving its computational phase. The proposed genetic algorithm is a modified version of a previously proposed hybrid genetic algorithm for the same problem. It is compared with two well suited meta-heuristic approaches reported in the literature: the hybrid genetic algorithm, which is the origin of our proposed variant, and a tabu-scatter search algorithm. Experimental results carried out on real DNA data show the advantages of using the proposed algorithm. Furthermore, statistical tests confirm the superiority of the proposed variant over the state-of-the-art heuristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.