Nucleic acid enzymes (NAzymes) are a class of nucleic acid molecules with catalytic activity, which can be modulated by the presence of different species such as metal ions, genetic biomarkers, small molecules or proteins, among others. NAzymes offer several important advantages for development of novel bioanalytical strategies, resulting from their functionality as specific recognition elements and as amplified analytical signal generators, making them ideal candidates for developing highly specific bioanalytical strategies for the detection of a wide variety of targets. When coupled with the exceptional features of inorganic nanoparticles (NPs), the sensitivity of the assays can be significantly improved, allowing the detection of targets using many different detection techniques including visual readout, spectrophotometry, fluorimetry, electrochemiluminescence, voltammetry, and single-particle inductively coupled plasma-mass spectrometry. Here we provide an overview of the fundamentals of novel strategies developed to achieve analytical signal amplification based on the use of NAzymes coupled with inorganic NPs. Some representative examples of such strategies for the highly sensitive detection of different targets will be presented, including metal ions, proteins, DNA- or RNA-based biomarkers, and small molecules or microorganisms. Furthermore, future prospective challenges will be discussed.
MicroRNAs (miRNAs) represent a class of small noncoding RNAs that are considered a novel emerging class of disease biomarkers in a variety of afflictions. Sensitive detection of miRNA is typically achieved using hybridization-based methods coupled with genetic amplification techniques. Although their sensitivity has improved, amplification techniques often present erroneous results due to their complexity. In addition, the use of these techniques is usually linked to the application of protein enzymes, the activity of which is dependent on the temperature and pH of the medium. To address these drawbacks, an alternative genetic enzyme for the highly sensitive detection of miRNAs is proposed in this work. Multicomponent nucleic acid enzymes (MNAzymes), coupled with the use of DNA-functionalized gold nanoparticles (AuNPs), were used in this study to develop an isothermal signal amplification strategy for visual genetic detection. miR146a, a biomarker of bovine mastitis present in milk, was selected as a model analyte. The developed methodology is easily carried out in 80 min at 50 °C, generating a low visual limit of detection of 250 pM based on the observation of a color change. The methodology was successfully applied to the detection of miR146a in raw cow milk samples.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.