Introduction. The Healthcare Waste (HCW) corresponds to the small share of Municipal Solid Waste (MSW) of a community. However, their composition and hazardous require adequate treatment and disposal, especially the (infectious), B (chemical), C (radioactive) and E (sharp). In São Paulo, infectious wastes (A and E) are disinfected through the electrothermal deactivation technology, in the Waste Treatment Unit (WTU), resulting in a waste similar to the common ones (class IIA). This unit treats 100 tons / day of infectious waste and forwards them to landfill for disposal with a cost of R$ 198,000.00 / month, with transport and final disposal environmental impact, and not meeting the National Solid Waste Policy (NSWP) requirements for waste recovery. Objectives. The aim of this research was study the alternatives for energy recovery of post-treated waste, focusing on the composition and energy content of these wastes, considering the legal requirements and the available technologies. Methods. Was developed a method for sample collection, integrating residues from the 2 operational lines of treatment, and analyzes parameters of calorific value and gravimetric composition. The results were compared to with parameters corresponding to the MSW, considering the treatment confers the post-treated residues this similarity. Results. The gravimetric composition identified the presence of high energy materials. The mean value of the lower calorific value (LCV) resulted in 5,872.5 Kcal / kg, representing 3.5 times that the RSU. Conclusions. The physical characterization carried out means of gravimetric and calorific analysis proved the similarity of residues posttreated with MSW, validating their indication for the energy recovery through coprocessing, incineration, plasma, pyrolysis and gasification technologies. In this case, the energy valorization presents winnings: a) direct: savings R $ 198,000.00 / month with transportation and disposition in landfill; and the RDF production can be commercialized; and b) indirect: increase the useful life of landfill; minimization of possible environmental impacts; the non-emission of greenhouse gases from transport; minimization of environmental liabilities; and compliance the waste hierarchy in the PNRS, closing the products life cycle within the concept of circular economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.