We investigated the effect of acute cold exposure, leptin, and the somatostatin analog octreotide (OCT) on thyroid type I (D1) and II (D2) deiodinase activities. Microsomal D1 and D2 activities were measured by the release of (125)I from (125)I-reverse triiodothyronine (rT(3)) under different assay conditions. Rats exposed to 4 degrees C (15, 30, 60, and 120 min) showed progressive reduction in thyroidal D1 and D2, reaching approximately 40% at 2 h (P < 0.05) despite increased circulating TSH (P < 0,05) associated with the higher thyroid D1 and D2 in hypothyroid rats. A single injection of leptin (8 microg/100 g body wt sc) induced increased thyroid and liver D1 (P < 0.05), but not thyroid D2, activities at 30 and 120 min, independently of the serum TSH rise shown only at 2 h. OCT (1 microg/kg body wt sc) increased D1 and D2 activity significantly 24 h after a single injection, with no changes in serum TSH. Therefore, leptin and somatostatin are potential physiological upregulators of thyroid deiodinases, and their low secretion during acute cold exposure may be a potential mechanism contributing to cold-induced reduction in thyroid deiodinase activity.
Early weaning is associated with changes in the developmental plasticity. Here, we studied the adipocytes morphology, adipokines expression or content in adipose tissue as well as adrenal and thyroid function of neonate and adult offspring primed by early weaning. After birth, lactating rats were divided into 2 groups: EW (early weaning)--dams were wrapped with a bandage to block access to milk during the last 3 days of lactation, and Control--dams whose pups had free access to milk throughout lactation (21 days). At postnatal day (PN) 21, EW pups had lower visceral and subcutaneous adipocyte area (-67.7% and -62%, respectively), body fat mass (-26%), and leptin expression in visceral adipocyte (-64%) but higher leptin expression in subcutaneous adipocyte (2.9-fold increase). Adrenal evaluations were normal, but neonate EW pups presented lower serum T3 (-55%) and TSH (-44%). At PN 180, EW offspring showed higher food intake, higher body fat mass (+21.6%), visceral and subcutaneous adipocyte area (both 3-fold increase), higher leptin (+95%) and ADRβ3 (2-fold increase) content in visceral adipose tissue, and higher adiponectin expression in subcutaneous adipose tissue (+47%) but lower in visceral adipose tissue (-40%). Adult EW offspring presented higher adrenal catecholamine content (+31%), but no changes in serum corticosterone or thyroid status. Thus, early weaning primed for hypothyroidism at weaning, which can be associated with the adipocyte hypertrophy at adulthood. The marked changes in catecholamine adrenal content and visceral adipocyte ADRB3 are generally found in obesity, contributing to the development of other cardiovascular and metabolic disturbances.
The level of thyrotropin (TSH) secretion is determined by the balance of TSH-releasing hormone (TRH) and thyroid hormones. However, neuromedin B (NB), a bombesin-like peptide, highly concentrated in the pituitary, has been postulated to be a tonic inhibitor of TSH secretion. We studied the pituitary-thyroid axis in adult male mice lacking NB receptor (NBR-KO) and their wild-type (WT) littermates. At basal state, NBR-KO mice presented serum TSH slightly higher than WT (18%, P,0·05), normal intra-pituitary TSH content, and no significant changes in and TSH mRNA levels. Serum thyroxine was normal but serum triiodothyronine (T3) was reduced by 24% (P,0·01) in NBR-KO mice. Pituitaries of NBR-KO mice exhibited no alteration in prolactin mRNA expression but type I and II deiodinase mRNA levels were reduced by 53 and 42% respectively (P,0·05), while TRH receptor mRNA levels were importantly increased (78%, P,0·05). The TSH-releasing effect of TRH was significantly higher in NBR-KO than in WT mice (7·1-and 4·0-fold respectively), but, while WT mice presented a 27% increase in serum T3 (P,0·05) after TRH, NBR-KO mice showed no change in serum T3 after TRH. NBR-KO mice did not respond to exogenous NB, while WT showed a 30% reduction in serum TSH. No compensatory changes in mRNA expression of NB or other bombesin-related peptides and receptors (gastrin-releasing peptide (GRP), GRP-receptor and bombesin receptor subtype-3) were found in the pituitary of NBR-KO mice. Therefore, the data suggest that NB receptor pathways are importantly involved in thyrotroph gene regulation and function, leading to a state where TSH release is facilitated especially in response to TRH, but probably with a less-bioactive TSH. Therefore, the study highlights the important role of NB as a physiological regulator of pituitary-thyroid axis function and gene expression.
Leptin and thyroid hormones (TH) have the ability to increase energy expenditure. Biological effects of TH are dependent on thyroxine (T4) to triiodothyronine (T3) conversion by deiodinase type 1 (D1) and type 2 (D2). Leptin has been shown to stimulate the hypothalamus-pituitary-thyroid axis and, also, to modulate 5'-deiodinases in different tissues, depending on energetic status of animals. Here, we examined the acute effects of leptin on hypothalamic, pituitary and BAT D2 and pituitary D1 activities. Male fed rats received a single subcutaneous injection of saline or leptin (8 microg/100 g BW) and sacrificed 2 hours later. Leptin promoted an important decrease in hypothalamic D2 (55% reduction, p <0.001) with no changes in pituitary D2, in concomitance with a 2-fold rise in serum TSH, suggesting that leptin acted at hypothalamus in order to stimulate TRH-TSH axis. In addition, BAT D2 was decreased by 25% (p<0.05). In contrast, pituitary D1 showed a 2-fold increase (p<0.001), indicating that, as demonstrated before for liver and thyroid D1, the pituitary enzyme is also acutely up-regulated by leptin. Serum concentrations of insulin and TH of leptin-injected animals remained unchanged. Regulation of 5'-deiodinases directing the local T3 production, is a mechanism by which leptin may alter hypothalamic, pituitary and BAT functions.
Obesity is a worldwide epidemic. Calcium influences energy metabolism regulation, causing body weight loss. Because maternal nicotine exposure during lactation programs for obesity, hyperleptinemia, insulin resistance (IR), and hypothyroidism, we decided to evaluate the possible effect of dietary calcium supplementation on these endocrine dysfunctions in this experimental model. Osmotic minipumps containing nicotine solution (N: 6 mg/kg per day for 14 days) or saline (C) were s.c. implanted in lactating rats 2 days after giving birth (P2). At P120, N and C offspring were subdivided into four groups: 1) C -standard diet; 2) C with calcium supplementation (CCa, 10 g calcium carbonate/kg rat chow); 3) N -standard diet; and 4) N with calcium supplementation (NCa). Rats were killed at P180. As expected, N offspring showed higher visceral and total body fat, hyperleptinemia, lower hypothalamus leptin receptor (OB-R) content, hyperinsulinemia, and higher IR index. Also, higher tyrosine hydroxylase (TH) expression (C51%), catecholamine content (C37%), and serum 25-hydroxyvitamin D 3 (C76%) were observed in N offspring. Dietary calcium supplementation reversed adiposity, hyperleptinemia, OB-R underexpression, IR, TH overexpression, and vitamin D. However, this supplementation did not reverse hypothyroidism. In NCa offspring, Sirt1 mRNA was lower in visceral fat (K37%) and higher in liver (C42%). In conclusion, dietary calcium supplementation seems to revert most of the metabolic syndrome parameters observed in adult offspring programed by maternal nicotine exposure during lactation. It is conceivable that the reduction in fat mass per se, induced by calcium therapy, is the main mechanism that leads to the increment of insulin action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.