Vanadium is a transition metal released into the atmosphere, as air-suspended particles, as a result of the combustion of fossil fuels and some metallurgic industry activities. Air-suspended particle pollution causes inflammation-related processes such as thrombosis and other cardiovascular events. Our aim was to evaluate the effect of vanadium pentoxide (V2O5) on endothelial cells since they are key participants in the pathogenesis of several cardiovascular and inflammatory diseases. Cell adhesion, the expression of adhesion molecules and oxidative stress, as well as proliferation, morphology and cell death of human umbilical vein endothelial cells (HUVECs) exposed to V2O5, were evaluated. Vanadium pentoxide at a 3.12 µg cm(-2) concentration induced an enhanced adhesion of the U937 macrophage cell line to HUVECs, owing to an increased expression of late adhesion molecules. HUVECs exposed to V2O5 showed an increase in ROS and nitric oxide production, and a diminished proliferation. These changes in vanadium-treated HUVECs were accompanied by severe morphological changes and apoptotic cell death. Vanadium pentoxide induced serious endothelial cell damage, probably related to the increased cardiovascular morbidity and mortality observed in individuals living in highly air-polluted areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.