BackgroundIn recent years, there has been considerable interest in using botanical agents to prevent skin damage resulting from solar UV-irradiation. Buddleja cordata is a plant that is known as “tepozan”. Some people in Mexico use the leaves of this plant to treat tumours, abscesses, sores and burns. The purpose of this study is to investigate the photoprotective properties of Buddleja cordata methanolic extract (BCME) against UVB-induced skin damage in SKH-1 hairless mice at the macroscopic and histological levels.MethodsBCME was characterised to determine its spectroscopic, chromatographic and antioxidant (DPPH, superoxide and hydroxyl radicals) properties. To conduct the photoprotection studies, BCME was applied topically to the skin of SKH-1 mice before acute exposure to UVB for 10 minutes. The murine skin samples were used for macroscopic and histological studies to assess tissue damage. Penetration of active components of BCME into stratum corneum on the dorsal area of mice was investigated in vivo by the tape stripping method. Moreover, genotoxicity of BCME was evaluated in a Vicia faba cell root micronucleus model.ResultsBCME displayed absorbance over the entire UVB spectrum, and its principal components included verbascoside and linarin. BCME exhibited antioxidant activity and significantly scavenged hydroxyl radicals. BCME reduced erythema, sunburn cell production, vessel congestion and epidermal thickening of UVB irradiated mouse skin. BCME penetrate the skin of mice. BCME did not exhibit genotoxic activity in the micronucleus test.ConclusionThe topical administration of BCME protected against acute UVB-induced damage in mouse SKH-1 skin, and our results suggest that BCME may potentially prevent photodamage.
To determine the effect of feed carotenoids on subcutaneous fat colour in cattle, 4567 animals were sampled at an abattoir; 790 of these were chosen for this study on the basis of instrumental colour measurements. The mean concentrations of b-carotene and lutein were 0.23 (SE 0 0.008) and 0.12 (SE 0 0.004) mgg(1 adipose tissue, respectively. Sun-drying and ensiling resulted in a 97.7% and 67.4% loss of b-carotene respectively (PB0.01), but an average loss of lutein of 71.7% (PB0.1) with no difference (P!0.1) between method of preservation. A 196-day field trial was conducted using 70 cross-bred 320kg (938 kg) bulls, which were grazed on a 32 ha Brachiaria decumbens pasture and offered a commercial supplement. After 28 days, five animals were also offered sun-dried Brachiaria humidicola, while another five received it ensiled. This scheme was repeated every 28 days, until day 168, when all but 10 animals were being offered either hay or silage. There was no difference in the concentration of either carotenoid as a result of the use of hay or silage at any time (P!0.1). Processing method had a greater effect on carotenoid concentration than plant species.
Ultraviolet radiation is a portion of the electromagnetic spectrum ranging from 10 to 400 nm, classified into three main categories: UV-A (320–400 nm), UV-B (280–320 nm), and UV-C (100–280 nm). The UV radiation from the sun that crosses the atmosphere and reaches the earth’s surface is composed largely of UV-A radiation (95%) and, to a lesser extent, UV-B (5%), which is normally filtered by stratospheric ozone. With the thinning of the ozone layer, UV-B radiation penetrates deeper into the earth’s surface, where it becomes dangerous due to its high energy content that acts at the molecular level, affecting the cycles of carbon, nitrogen, and other elements, thus, having a direct impact on global warming. On the other hand, UV radiation alters numerous essential organic compounds for living organisms. Since its discovery, it has been established that e UV-B causes alterations in plant development and metabolism, both primary and secondary. In this chapter, we summarize the current knowledge about the effects of UV radiation on the morphological, biochemical, and genetic processes in plants.
The lipids are essential compounds of cells, with biochemical and structural properties. Lipids are classified according to their chain length or saturation levels and biogenesis. Lipidomics is a spectroscopic and spectrometric technique, like Mass Spectrometry and Nuclear Magnetic Resonance, as well as bioinformatics to quantify and characterize the lipid profile. Lipidomics enables the fundamental understanding of lipid biology, the identification of drug targets for therapy, and the discovery of lipid biomarkers of disease cohorts. Therefore, lipidomics allows knowing the diagnosis and clinical follow-up in medical therapy towards any disease. In this way, the lipid profile allows us to monitor the administration of a clinical treatment and assertively diagnose human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.